压裂工艺 | 郭建春等:中国致密油藏压裂驱油技术进展及发展方向

文摘   2024-08-06 07:30   湖北  

作者|郭建春 马莅 卢聪

原题|中国致密油藏压裂驱油技术进展及发展方向

来源|石油学报

小编|小油

这是"油气研究前瞻"的第248篇文章

01


全文导读


随着全球能源需求的增长,传统油气资源的开发逐渐触及瓶颈。面对这一挑战,中国的油气勘探和开发领域迎来了创新技术的春风。近期,中国石油天然气集团有限公司和中国石油化工集团有限公司在油田端和水井端开展的压裂驱油技术攻关及现场实践取得了重要进展,为低渗致密、难动用的非常规储层的高效开采提供了新的解决方案。
传统的油气开采方法在非常规储层面前显得力不从心。这类储层通常埋藏更深、温度和压力更高、物性更差,给常规的水力压裂、水驱和化学驱带来了诸多技术和经济难题。例如,常规压裂工序复杂且成本高昂,而常规水驱则面临水动力联系差、水窜水淹严重等问题,化学驱则因药剂分子在地层岩石孔隙中的滞留导致效率降低。这些限制使得储层增油效果有限,难以实现经济高效的开发。
在此背景下,“压—注—采”一体化压裂驱油技术,或称为“压驱”,应运而生。该技术将单井压裂工艺、常规水驱开发以及化学剂驱油三者有机结合,形成了一整套连续的油藏开发流程。根据作业方式与作用机理的不同,压驱工艺分为正向压驱和反向压驱两种方式。
正向压驱主要应用于低渗储层,通过在水井端以储层微破裂压力注入大量清水与驱油剂,使裂缝延伸的同时,将驱油剂沿裂缝有效驱替到地层孔隙中。此过程中不加砂让裂缝闭合,然后通过焖井渗吸,实现油水置换。胜利油田采用脉冲注入的方式运用了这项技术,显著提高了储层的采收率,经济效益明显。
反向压驱则针对更为致密的储层,如页岩油。该技术从油井端入手,使用低黏度渗吸液代替压裂液压开地层,快速注入渗吸剂后焖井,使压裂液与驱油剂在裂缝—基质中扩散,实现原油的有效渗吸置换。长庆油田在致密油、页岩油开采中成功应用了生产井反向压驱技术,初期产量提高显著,实现了页岩油储层的有效动用和经济开发。
鄂尔多斯盆地延长组作为超低渗致密储层的重要代表,其开发历程同样印证了压裂驱油技术的重要性。该地区通过细分切割体积压裂提高缝控程度,近破裂压力注水形成大量微裂缝,前置大液量注入补充地层能量等措施,极大改善了储层改造效果和油田产能。
尽管压裂驱油技术已在多个油田取得成功,但仍面临地质认识不清、储层改造不足等挑战。未来的发展需加强地质—工程一体化研究,深化水平井立体改造技术,开展压驱技术作用机理研究,并完善低成本高效率压驱配套技术,以助推低渗致密储层开发的降本增效。
综上所述,压裂驱油技术的创新和应用,为中国乃至全球的非常规油气资源开发提供了新的思路和方法。随着技术的不断成熟和优化,期待该技术在未来能够解锁更多难以动用的油气资源,为全球能源供应安全做出更大贡献。


02


HIGHLIGHT图片


图1 压驱技术示意
Fig.1 Schematic diagram of fracturing-flooding technology

图2 长庆油田国家级百万吨页岩油示范区概况
Fig.2 National million-ton shale oil demonstration area of Changqing oilfield

图3 复合暂堵示意
Fig.3 Schematic diagram of compound temporary plugging

图4 温度效应诱发微裂缝
Fig.4 Micro-fractures induced by temperature effect

图5 不同注水方式下波及面积
Fig.5 Swept area under different water injection methods


免责声明:本文仅用于学术交流和传播,不构成投资建议

-------

参考资料:

[1] 张抗,张立勤,刘冬梅.近年中国油气勘探开发形势及发展建议[J].石油学报,2022,43(1):15-28.ZHANG Kang,ZHANG Liqin,LIU Dongmei.Situation of China’s oil and gas exploration and development in recent years and relevant suggestions[J].Acta Petrolei Sinica,2022,43(1):15-28.

[2] 胥云,雷群,陈铭,等.体积改造技术理论研究进展与发展方向[J].石油勘探与开发,2018,45(5):874-887.XU Yun,LEI Qun,CHEN Ming,et al.Progress and development of volume stimulation techniques[J].Petroleum Exploration and Development,2018,45(5):874-887.

[3] 雷群,管保山,才博,等.储集层改造技术进展及发展方向[J].石油勘探与开发,2019,46(3):580-587.LEI Qun,GUAN Baoshan,CAI Bo,et al.Technological progress and prospects of reservoir stimulation[J].Petroleum Exploration and Development,2019,46(3):580-587.

[4] 丁彬,熊春明,耿向飞,等.致密油纳米流体增渗驱油体系特征及提高采收率机理[J].石油勘探与开发,2020,47(4):756-764.DING Bin,XIONG Chunming,GENG Xiangfei,et al.Characteristics and EOR mechanisms of nanofluids permeation flooding for tight oil[J].Petroleum Exploration and Development,2020,47(4):756-764.

[5] 何金钢,王洪卫.三类油层压裂驱油技术设计及效果研究[J].西南石油大学学报:自然科学版,2018,40(5):95-104.HE Jingang,WANG Hongwei.Design and effect of fracture-flooding in class Ⅲ oil reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(5):95-104.

[6] 樊超,李三山,李璐,等.低渗透油藏压驱注水开发技术研究[J].石油化工应用,2022,41(1):37-40.FAN Chao,LI Sanshan,LI Lu,et al.Research on high-pressure water injection in low-permeability reservoirs[J].Petrochemical Industry Application,2022,41(1):37-40.

[7] 徐冰.中低渗储层压裂渗滤强化采油机理及数学模型研究——以大庆油田杏北开发区为应用实例[D].大庆:东北石油大学,2019.XU Bing.Study on mechanism and mathematical model of fracturing and percolation enhanced oil recovery in medium and low permeability reservoirs:an example in the Xingbei development zone of Daqing oilfield[D].Daqing:Northeast Petroleum University,2019.

[8] 师煜涵.基于核磁共振研究压裂液在长7储层中的渗吸作用[D].西安:西安石油大学,2018.SHI Yuhan.Study on fracturing fluid’s imbibition of chang-7 source based on nuclear magnetic resonance[D].Xi’an:Xi’an Shiyou University,2018.

[9] 徐永辉,孟阳,石世革.低渗透油藏压驱注水量设计方法[J].内蒙古石油化工,2021,47(11):118-121.XU Yonghui,MENG Yang,SHI Shige.Design method of water injection rate for high-pressure water injection in low permeability reservoirs[J].Inner Mongolia Petrochemical Industry,2021,47(11):118-121.

[10] 李耀华.陆相致密油可动性影响因素研究——以鄂尔多斯盆地延长组为例[D].北京:中国石油大学(北京),2019.LI Yaohua.Critical factors controlling the tight oils movability of continental lacustrine Basins:a case study of the Upper Triassic Yanchang Formation tight oil reservoir,Ordos Basin,China[D].Beijing:China University of Petroleum,2019.

[11] 张矿生,唐梅荣,陶亮,等.庆城油田页岩油水平井压增渗一体化体积压裂技术[J].石油钻探技术,2022,50(2):9-15.ZHANG Kuangsheng,TANG Meirong,TAO Liang,et al.Horizontal well volumetric fracturing technology integrating fracturing,energy enhancement,and imbibition for shale oil in Qingcheng oilfield[J].Petroleum Drilling Techniques,2022,50(2):9-15.

[12] 周庆凡,杨国丰.致密油与页岩油的概念与应用[J].石油与天然气地质,2012,33(4):541-544.ZHOU Qingfan,YANG Guofeng.Definition and application of tight oil and shale oil terms[J].Oil & Gas Geology,2012,33(4):541-544.

[13] 尹定.双重孔隙介质单井水锥数值模拟方法[J].石油勘探与开发,1981(1):71-82.YIN Ding.Numerical simulation method of single well water cone in dual porous media[J].Petroleum Exploration and Development,1981(1):71-82.

[14] 向阳.储集岩石的渗吸及其应用[J].新疆石油地质,1984(4):46-56.XIANG Yang.Imbibition of reservoir rock and its application[J].Xinjiang Petroleum Geology,1984(4):46-56.

[15] 杨正明,朱维耀,陈权,等.低渗透裂缝性砂岩油藏渗吸机理及其数学模型[J].江汉石油学院学报,2001,23(增刊1):25-27.YANG Zhengming,ZHU Weiyao,CHEN Quan,et al.Imbibition mechanism of low permeability fractured sandstone reservoir and its mathematical model[J].Journal of Jianghan Petroleum Institute,2001,23(S1):25-27.

[16] 计秉玉,陈剑,周锡生,等.裂缝性低渗透油层渗吸作用的数学模型[J].清华大学学报:自然科学版,2002,42(6):711-713.JI Bingyu,CHEN Jian,ZHOU Xisheng,et al.Mathematical model of imbibition in fractured low permeability reservoirs[J].Journal of Tsinghua University:Science and Technology,2002,42(6):711-713.

[17] 王家禄,刘玉章,陈茂谦,等.低渗透油藏裂缝动态渗吸机理实验研究[J].石油勘探与开发,2009,36(1):86-90.WANG Jialu,LIU Yuzhang,CHEN Maoqian,et al.Experimental study on dynamic imbibition mechanism of low permeability reservoirs[J].Petroleum Exploration and Development,2009,36(1):86-90.

[18] 蔡建超,郭士礼,游利军,等.裂缝-孔隙型双重介质油藏渗吸机理的分形分析[J].物理学报,2013,62(1):014701.CAI Jianchao,GUO Shili,YOU Lijun,et al.Fractal analysis of spontaneous imbibition mechanism in fractured-porous dual media reservoir[J].Acta Physica Sinica,2013,62(1):014701.

[19] 李一朋,郑波,吴明江,等.吐哈油田特低渗砂砾岩稠油油藏压裂技术研究应用[J].石油地质与工程,2018,32(6):96-98.LI Yipeng,ZHENG Bo,WU Mingjiang,et al.Study and application of fracturing technique for extra-low permeability glutenite heavy oil reservoirs in Tuha oilfield[J].Petroleum Geology and Engineering,2018,32(6):96-98.

[20] 王强.微压裂井注水动态模拟研究[D].成都:西南石油大学,2018.WANG Qiang.Dynamic simulation of injection water in micro-fractured well[D].Chengdu:Southwest Petroleum University,2018.

[21] 李兴科,尹洪军,徐志涛,等.基于流管法的低渗透油藏水驱动态分析[J].水动力学研究与进展A辑,2017,32(6):704-711.LI Xingke,YIN Hongjun,XU Zhitao,et al.Analysis of water drive performance using streamtube method in low permeability reservoirs[J].Journal of Hydrodynamics,2017,32(6):704-711.

[22] 修书志,贾元钊,张斌,等.巨厚低渗砂砾岩储层控缝高蓄能缝网压裂技术研究及应用[J].中外能源,2016,21(10):58-63.XIU Shuzhi,JIA Yuanzhao,ZHANG Bin,et al.Research and application of height control-energizing-network fracturing technology in extremely-thick low permeability glutenite reservoirs[J].Sino-Global Energy,2016,21(10):58-63.

[23] 吴忠宝,李莉,阎逸群.超低渗油藏体积压裂与渗吸采油开发新模式[J].断块油气田,2019,26(4):491-494.WU Zhongbao,LI Li,YAN Yiqun.New development pattern of network fracturing and imbibition oil recovery for super-low permeability oil reservoirs[J].Fault-Block Oil & Gas Field,2019,26(4):491-494.

[24] 马玉娟.大庆长垣油田三类油层压裂驱油提高采收率技术及其应用[J].大庆石油地质与开发,2021,40(2):103-109.MA Yujuan.Application of fracturing-flooding EOR technique in Type Ⅲ oil reservoirs in Daqing Placanticline oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):103-109.

[25] 李鸣.压裂液在长7储层中的渗吸作用研究[D].西安:西安石油大学,2018.LI Ming.Study on the spontaneous imbibition effect of fracturing fluid in Chang 7 reservoir[D].Xi’an:Xi’an Shiyou University,2018.

[26] 朱耿博仑.合水地区长8储层压裂液渗吸驱油机理及影响因素研究[D].西安:西安石油大学,2019.ZHU Gengbolun.Study on mechanism and influencing factors of fracturing fluid imbibition displacement in Chang 8 reservoir in Heshui area[D].Xi’an:Xi’an Shiyou University,2019.

[27] 黄婷,苏良银,达引朋,等.超低渗透油藏水平井储能压裂机理研究与现场试验[J].石油钻探技术,2020,48(1):80-84.HUANG Ting,SU Liangyin,DA Yinpeng,et al.Research and field test on energy storage fracturing mechanism of horizontal wells in ultra-low permeability reservoirs[J].Petroleum Drilling Techniques,2020,48(1):80-84.

[28] 尹虎,董满仓,李旭,等.致密油藏水平井前置增能体积压裂高效开发技术研究及应用——以延长油田FL121平2井为例[J].石油地质与工程,2021,35(3):97-100.YIN Hu,DONG Mancang,LI Xu,et al.Research and application of high efficiency development technology of pre energizing volume fracturing for horizontal wells in tight reservoirs:by taking Well FL121 Ping 2 in Yanchang oilfield as an example[J].Petroleum Geology and Engineering,2021,35(3):97-100.

[29] 党海龙,姜汉桥,王小锋,等.杏子川超低渗储层孔喉特征对水驱油影响规律与机制研究[J].石油科学通报,2020,5(4):541-548.DANG Hailong,JIANG Hanqiao,WANG Xiaofeng,et al.The influence of pore throat characteristics of the Xingzichuan ultra-low permeability reservoir on water flooding mechanisms[J].Petroleum Science Bulletin,2020,5(4):541-548.

[30] 王锋.压驱工艺优化及现场应用[J].石化技术,2022,29(4):10-11.WANG Feng.Optimization of pressure drive technology and its field application[J].Petrochemical Industry Technology,2022,29(4):10-11.

[31] 许焕昌,张洪兴.渗吸相对渗透率的计算及其应用[J].大庆石油地质与开发,1987(3):37-42.XU Huanchang,ZHANG Hongxing.Calculation of imbibition relative permeability and its application[J].Petroleum Geology & Oilfield Development in Daqing,1987(3):37-42.

[32] 张红玲.裂缝性油藏中的渗吸作用及其影响因素研究[J].油气采收率技术,1999,6(2):44-48.ZHANG Hongling.Research on the imbibition and its effect factors of fractured reservoir[J].Oil & Gas Recovery Techinology,1999,6(2):44-48.

[33] 殷代印,翟云芳,张雁.裂缝性砂岩油藏周期注水数学模型及注水效果的影响因素[J].大庆石油学院学报,2000,24(1):88-90.YIN Daiyin,ZHAI Yunfang,ZHANG Yan.Cycle injection math model and effect factor of injection outcome for fracture stone reservoir[J].Journal of Daqing Petroleum Institute,2000,24(1):88-90.

[34] 李爱芬,凡田友,赵琳.裂缝性油藏低渗透岩心自发渗吸实验研究[J].油气地质与采收率,2011,18(5):67-69.LI Aifen,FAN Tianyou,ZHAO Lin.Experimental study of spontaneous imbibition in low permeability core,fractured reservoir[J].Petroleum Geology and Recovery Efficiency,2011,18(5):67-69.

[35] 付锁堂,金之钧,付金华,等.鄂尔多斯盆地延长组7段从致密油到页岩油认识的转变及勘探开发意义[J].石油学报,2021,42(5):561-569.FU Suotang,JIN Zhijun,FU Jinhua,et al.Transformation of understanding from tight oil to shale oil in the Member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development[J].Acta Petrolei Sinica,2021,42(5):561-569.

[36] BURDINE N T.Relative permeability calculations from pore size distribution data[J].Journal of Petroleum Technology,1953,5(3):71-78.

[37] MATTAX C C,KYTE J R.Imbibition oil recovery from fractured,water-drive reservoir[J].Society of Petroleum Engineers Journal,1962,2(2):177-184.

[38] WARREN J E,ROOT P J.The behavior of naturally fractured reservoirs[J].Society of Petroleum Engineers Journal,1963,3(3):245-255.

[39] LAND C S.Calculation of imbibition relative permeability for two- and three-phase flow from rock properties[J].Society of Petroleum Engineers Journal,1968,8(2):149-156.

[40] YAMAMOTO R H,PADGETT J B,FORD W T,et al.Compositional reservoir simulator for fissured systems - the single-block model[J].Society of Petroleum Engineers Journal,1971,11(2):113-128.

[41] 侯冰,陈勉,李志猛,等.页岩储集层水力裂缝网络扩展规模评价方法[J].石油勘探与开发,2014,41(6):763-768.HOU Bing,CHEN Mian,LI Zhimeng,et al.Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J].Petroleum Exploration and Development,2014,41(6):763-768.

[42] 张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验[J].石油学报,2014,35(3):496-503.ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J].Acta Petrolei Sinica,2014,35(3):496-503.

[43] KANG Yili,YANG Dongsheng,YOU Lijun,et al.Experimental evaluation method for permeability changes of organic-rich shales by high-temperature thermal stimulation[J].Journal of Natural Gas Geoscience,2021,6(3):145-155.

[44] YAO Bowen,WANG Lei,YIN Xiaolong,et al.Numerical modeling of cryogenic fracturing process on laboratory-scale Niobrara shale samples[J].Journal of Natural Gas Science and Engineering,2017,48:169-177.

[45] JIANG Xingwen,CHEN Mian,LI Qinghui,et al.Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing[J].Energy,2022,254:124422.

[46] LI Xinlei,YOU Lijun,KANG Yili,et al.Investigation on the thermal cracking of shale under different cooling modes[J].Journal of Natural Gas Science and Engineering,2022,97:104359.

[47] VISHAL V,RIZWAN M,MAHANTA B,et al.Temperature effect on the mechanical behavior of shale:implication for shale gas production[J].Geosystems and Geoenvironment,2022,1(4):100078.

[48] RAMEZANIAN M,EMADI H.Effect of cryogenic treatment thermal shock on rock dynamic elastic properties and permeability of wolfcamp core samples-an experimental study[R].SPE 200823,2021.

[49] 王香增,党海龙,高涛.延长油田特低渗油藏适度温和注水方法与应用[J].石油勘探与开发,2018,45(6):1026-1034.WANG Xiangzeng,DANG Hailong,GAO Tao.Method of moderate water injection and its application in ultra-low permeability oil reservoirs of Yanchang oilfield,NW China[J].Petroleum Exploration and Development,2018,45(6):1026-1034.

[50] 蒋宝云,周玉龙,陈莉,等.滨425区块非均质油藏压裂裂缝参数优化[J].科学技术与工程,2021,21(22):9322-9329.JIANG Baoyun,ZHOU Yulong,CHEN Li,et al.Optimization of fracture parameters for heterogeneous reservoir in B425 block[J].Science Technology and Engineering,2021,21(22):9322-9329.

[51] 樊建明,王冲,屈雪峰,等.鄂尔多斯盆地致密油水平井注水吞吐开发实践——以延长组长7油层组为例[J].石油学报,2019,40(6):706-715.FAN Jianming,WANG Chong,QU Xuefeng,et al.Development and practice of water flooding huff-puff in tight oil horizontal well,Ordos Basin:a case study of Yanchang Formation Chang 7 oil layer[J].Acta Petrolei Sinica,2019,40(6):706-715.

[52] 王付勇,曾繁超,赵久玉.低渗透/致密油藏驱替-渗吸数学模型及其应用[J].石油学报,2020,41(11):1396-1405.WANG Fuyong,ZENG Fanchao,ZHAO Jiuyu.A mathematical model of displacement and imbibition of low-permeability/tight reservoirs and its application[J].Acta Petrolei Sinica,2020,41(11):1396-1405.

[53] 黄兴,窦亮彬,左雄娣,等.致密油藏裂缝动态渗吸排驱规律[J].石油学报,2021,42(7):924-935.HUANG Xing,DOU Liangbin,ZUO Xiongdi,et al.Dynamic imbibition and drainage laws of factures in tight reservoirs[J].Acta Petrolei Sinica,2021,42(7):924-935.

[54] 王强,赵金洲,胡永全,等.岩心尺度静态自发渗吸的数值模拟[J].石油学报,2022,43(6):860-870.WANG Qiang,ZHAO Jinzhou,HU Yongquan,et al.Numerical simulation of static spontaneous imbibition at the core scale[J].Acta Petrolei Sinica,2022,43(6):860-870.

[55] 郭建春,陶亮,胡克剑,等.页岩储层水相渗吸作用规律实验[J].石油学报,2022,43(9):1295-1304.GUO Jianchun,TAO Liang,HU Kejian,et al.Experiment on imbibition law of aqueous phase in shale reservoir[J].Acta Petrolei Sinica,2022,43(9):1295-1304.

[56] 王飞,阮颖琪,陈巧韵,等.考虑压裂液渗吸换油效应的压裂焖井压降模型[J].石油勘探与开发,2021,48(6):1250-1257.WANG Fei,RUAN Yingqi,CHEN Qiaoyun,et al.A pressure drop model of post-fracturing shut-in considering the effect of fracturing-fluid imbibition and oil replacement[J].Petroleum Exploration and Development,2021,48(6):1250-1257.

[57] 刘义坤,王凤娇,汪玉梅,等.中低渗透储集层压驱提高采收率机理[J].石油勘探与开发,2022,49(4):752-759.LIU Yikun,WANG Fengjiao,WANG Yumei,et al.The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs[J].Petroleum Exploration and Development,2022,49(4):752-759.

[58] 王小聪,雷群,肖沛文,等.现场水配制纳米驱油剂及其驱油机理[J].石油学报,2021,42(3):350-357.WANG Xiaocong,LEI Qun,XIAO Peiwen,et al.Preparation of Nano-oil-displacing agent with on-site water and its oil displacement mechanism[J].Acta Petrolei Sinica,2021,42(3):350-357.

[59] 康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J].Acta Petrolei Sinica,2020,41(4):467-477.

[60] 刘学伟,田福春,李东平,等.沧东凹陷孔二段页岩压裂套变原因分析及预防对策[J].石油钻采工艺,2022,44(1):77-82.LIU Xuewei,TIAN Fuchun,LI Dongping,et al.Cause analysis and preventive countermeasures for casing deformation when fracturing shale in Kong 2 member in Cangdong sag[J].Oil Drilling & Production Technology,2022,44(1):77-82.

END

扫描左方二维码

邀您进行业千人大群

往期精彩

二氧化碳资源化利用研究进展

中国南海“双深双高”技术进展

纳米颗粒技术优化CO2地质封存

深层煤岩气二氧化碳泡沫压裂评价方法

二氧化碳捕集研究进展及在驱油中的应用

国内外PDC钻头新进展与发展趋势展望

中国海油在海域勘探取得重大进展

深层煤层气水平井安全钻井技术

中国油气工程技术装备智能化

超深特深油气井固井关键技术进展

中国煤系气形成分布、甜点评价与展望

中国煤层气水平井钻完井技术研究进展

深地塔科1井钻井设计关键技术

提高油气田采收率技术协同方法与应用

油田开发提高采收率新方法研究进展与展望

深部煤层气井压裂工艺研究及应用

超临界CO2脉动压裂-渗流耦合系统应用

深层碳酸盐岩储层酸压进展与展望

旋转齿PDC钻头研制及应用

PDC钻头钻井提速关键影响因素研究

氦气资源形成条件、成因与富集规律

PDC钻头研究现状与发展趋势

超深层油气勘探领域研究进展与关键问题

中国深部煤层气地质研究进展

深层煤岩气水平井钻井技术

超深特深油气井固井关键技术进展

深部煤层气井排采制度研究与实践


油气研究前瞻
聚焦全球油气领域的科技创新、政策解读、工业升级、资本运作等热点话题,致力于为油气领域的决策者、创新者、研究者与投资者提供高端咨询服务。我们密切关注油气行业的最新动态,分析能源战略、创新技术和产业布局的新进展,以助力行业的发展和升级。
 最新文章