以太网IO控制卡:C#实时读写时间测试

财富   2024-11-23 08:30   广东  

点击上方正运动小助手,随时关注新动态!



本文导读


今天,正运动小助手给大家分享一下运动控制卡之ECI 0系列IO板卡的用法,并测试一下多个IO读写的速度。ECI其他系列IO板卡的输入输出使用也类似,读写速度也类似,可以供参考。




一、ECI0032/ECI0064 IO卡硬件介绍

ECI0032/ECI0064等ECI 0系列运动控制卡支持以太网,RS232通讯接口和电脑相连,接收电脑的指令运行,支持ZCAN扩展,可扩展128路AD,64路DA;272路输入和272路输出。

ECI0032 IO控制卡

ECI0064 IO控制卡

ECI0032/ECI0064等ECI 0系列运动控制卡采用了优化的网络通讯协议可以实现实时的逻辑控制和IO状态的监控。

ECI0032/ECI0064等ECI 0系列IO卡的应用程序可以使用VC、VB、VS、C++、C#等软件开发,程序运行时需要动态库zmotion.dll,调试时可以将RTSys软件同时连接控制器,从而方便调试、方便观察。

ECI0032典型连接配置图:

ECI0064典型连接配置图:




二、IO接口介绍

1.IO电源注意事项

ECI0032/ECI0064和其他控制卡不一样,它正常工作需要两个电源同时供电(内部电源、IO电源)。值得注意的是:给内部电源和IO电源供电的电源推荐使用2个独立的24V电源,防止IO电路上的干扰直接通过电源传输到控制卡的内部电路上影响控制卡的正常工作。

2.输入口功能介绍

通用输入口接线图参考

通用输入口的硬件规格

通过硬件参数我们发现通用输入口的输入方式是NPN漏型信号,所以在IO传感器的选择上大家要注意选择NPN类型的传感器。ZMC系列及ECI其他系列等产品的输入也类似,详见对应产品的硬件手册。


如何验证控制卡输入口硬件功能是否正常

根据上图的输入口等效电路图分析:当输入口和EGND导通的时候输入口就可以捕获到信号。那么我们可以准备一根导线,导线的一段接IO电源的地(EGND),导线的另外一端去不停的触碰对应输入口的端子。同时打开RTSys/ZDevelop软件连接控制卡后打开输入口监控界面去观察对应的输入口状态是否会根据触碰的情况而变化,如果对应输入口和EGND导通对应输入口状态就显示绿灯,输入口和EGND不导通对应的输入口状态就显示红灯,那么输入口的硬件就是正常的。


RTSys输入口监控界面

输入口0(IN0)与EGND导通的输入口视图

输入口0(IN0)与EGND不导通的输入口视图

3.输出口功能介绍

通用输出口接线图参考

通用输出口的硬件规格

通过硬件参数我们发现通用输出口的输出方式是NPN漏型信号,所以输出口输出的时候是一个0V的信号,也就是和EGND导通的信号。ZMC系列及ECI其他系列等产品的输出也类似,详见对应产品的硬件手册。

如何验证控制卡输出口硬件功能是否正常

根据上图的输出口等效电路图分析:当输出口输出时,OUT口是和EGND导通的。虽然输出的时候输出口的电压也是0V但输出口没有输出的时候,输出口的状态是一个高阻态的状态。所以验证输出口的功能是不推荐使用万用表的电压档去测试,而是通过万用表的导通档去打导通测试输出口的功能是否正常。(万用表打到导通档,如果是红黑表笔之间是导通的,那么万用表会发出滴滴的声音。不同的万用表的叫声不同,大家可以把万用表打到导通档后短接红黑表笔听听声音就知道你的万用表是什么音色了)


万用表导通档档位图

这样的话我们可以打开RTSys/ZDevelop软件连接控制器后打开输出口监控界面,在输出口监控界面去操作对应的输出口开关,同时把万用表打到导通档,然后万用表的红表笔触碰对应输出口的接线端子,黑表笔触碰IO电源的地EGND。
观察当RTSys软件打开输出口的时候万用表是否是导通的(万用表是否有滴滴声),关闭输出口的时候万用表是否是未导通状态(万用表是否有滴滴声),如果是那么输出口的硬件是正常的。

RTSys输出口监控界面

输出口0(OP0)未输出的万用表导通档测试情况

输出口0(OP0)输出时的万用表导通档测试情况

操作演示

4.控制器基本信息




三、C#语言进行ECIO板卡的开发

1.在VS2015菜单“文件”→“新建”→ “项目”,启动创建项目向导。

2.选择开发语言为“Visual C#”和.NET Framework 4以及Windows窗体应用程序。

3.找到厂家提供的光盘资料里面的C#函数库,路径如下(64位库为例)。

A、进入厂商提供的光盘资料找到“8.PC函数”文件夹,并点击进入。

B、选择“函数库2.1”文件夹。

C、选择“Windows平台”文件夹。

D、根据需要选择对应的函数库这里选择64位库。

E、解压C#的压缩包,里面有C#对应的函数库。

F、函数库具体路径如下。

4.将厂商提供的C#的库文件以及相关文件复制到新建的项目中。

A、将zmcaux.cs文件复制到新建的项目里面中。

B、将zaux.dll和zmotion.dll文件放入bin\debug文件夹中。

5.用vs打开新建的项目文件,在右边的解决方案资源管理器中点击显示所有,然后鼠标右键点击zmcaux.cs文件,点击包括在项目中。

6.双击Form1.cs里面的Form1,出现代码编辑界面,在文件开头写入 using cszmcaux,并声明控制器句柄g_handle。

7.至此项目新建完成,可进行C#项目开发。


四、PC函数介绍

1.PC函数手册也在光盘资料里面,具体路径如下。

2.链接控制器,获取链接句柄。

指令3

ZAux_OpenEth

指令原型

int32  __stdcall  ZAux_OpenEth(char  *ipaddr, ZMC_HANDLE * phandle)

指令说明

以太网连接控制器。

输入参数

参数名

描述

Ipaddr

连接的IP地址

输出参数

参数名

描述

Phandle

返回的连接句柄

返回值

成功返回值为0,非0详见错误码说明。

指令示例

网口连接控制器

详细说明

1.网口采用RJ45标准网线接口,通讯速率为100Mbit/s。

2.控制器出厂的IP地址为192.168.0.11,端口号为502。对端通讯设备需与控制器处于同一网段,才可进行连接。

3.最常用的控制器连接方式。

4.ZMC_HANDLE类型:Zmotion库中,专门用于控制卡连接数据定义类型;

3.快速读取多个输入口当前状态接口说明。

指令200

ZAux_GetModbusIn

指令原型

int32 __stdcall ZAux_GetModbusIn (ZMC_HANDLE handle,int ionumfirst, int  ionumend, uint8 * pValueList);

指令说明

快速读取多个当前的输入状态。

输入参数

参数名

描述

handle

连接句柄。

ionumfirst

IN起始编号。

ionumend

IN结束编号。

输出参数

参数名

描述

pValueList

位状态,按位存储。

返回值

成功返回值为0,非0详见错误码说明。

指令示例

多个IO读取

详细说明

Modbus方式获取出来的状态是未反转前的状态。如果有用INVERT_IN反转,读取的状态可能就是不对的

4.快速读取多个输出口当前状态接口说明。

指令201

ZAux_GetModbusOut

指令原型

int32 __stdcall ZAux_GetModbusOut (ZMC_HANDLE handle,int ionumfirst, int  ionumend, uint8  * pValueList);

指令说明

快速读取多个当前的输出状态。Modbus方式获取出来的状态是未反转前的状态。如果有用INVERT_IN反转,读取的状态可能就是不对的

输入参数

参数名

描述

handle

连接句柄。

ionumfirst

OUT起始编号。

ionumend

OUT结束编号。

输出参数

参数名

描述

pValueList

位状态,按位存储。

返回值

成功返回值为0,非0详见错误码说明。

指令示例

多个IO读取

详细说明

Modbus方式获取出来的状态是未反转前的状态。如果有用INVERT_IN反转,读取的状态可能就是不对的




五、C#快速读取多个IO状态的测试例程

1.例程界面如下

2.链接按钮的事件处理函数中调用链接控制器的接口函数ZAux_OpenEth(),与控制器进行链接,链接成功后启动定时器1监控控制器的IO状态。
//链接控制器private void LinkButton_Click(object sender, EventArgs e){    zmcaux.ZAux_OpenEth(IP_comboBox.Text, out g_handle);    if (g_handle != (IntPtr)0)    {        // MessageBox.Show("控制器链接成功!", "提示");        timer1.Enabled = true;        LinkButton.BackColor = Color.FromArgb(200, 255, 200);    }    else    {        MessageBox.Show("控制器链接失败,请检测IP地址!", "警告");        LinkButton.BackColor = Color.FromArgb(255, 200, 200);    }}

3.通过定时器1监控控制器的IO状态。

//定时器更新IO信息private void timer1_Tick(object sender, EventArgs e){    int j, k;    int TestNum = 50;    //快速读取输入口状态接口时间测试    byte[] InState = new byte[4];    DateTime beforeDT = System.DateTime.Now;    for (int count = 0; count < TestNum; count++)    {        zmcaux.ZAux_GetModbusIn(g_handle, 0, 32, InState);        for (int i = 0; i < 32; i++)        {            j = i / 8;            k = i % 8;            if (((InState[j] >> k) & 1) == 1)            {                InStatus[i].BackColor = Color.FromArgb(200, 255, 200);            }            else            {                InStatus[i].BackColor = Color.FromArgb(255, 200, 200);            }        }    }    DateTime afterDT = System.DateTime.Now;    //计算beforeDT与afterDT的时间差    TimeSpan ts = afterDT - beforeDT;    InMoitoring.Text = "输入口监控_刷新时间:  " + (ts.TotalMilliseconds * 1000 / TestNum).ToString() + " us    ";    //快速读取输出口状态接口时间测试    byte[] OutState = new byte[4];    DateTime beforeDTOP = System.DateTime.Now;    for (int count = 0; count < TestNum; count++)    {        zmcaux.ZAux_GetModbusOut(g_handle, 0, 32, OutState);        for (int i = 0; i < 32; i++)        {            j = i / 8;            k = i % 8;            if (((OutState[j] >> k) & 1) == 1)            {                OutStatus[i].BackColor = Color.FromArgb(200, 255, 200);            }            else            {                OutStatus[i].BackColor = Color.FromArgb(255, 200, 200);            }        }    }    DateTime afterDTOP = System.DateTime.Now;    //计算beforeDTOP与afterDTOP的时间差    ts = afterDTOP - beforeDTOP;    OutMoitoring.Text = "输出口监控_刷新时间:  " + (ts.TotalMilliseconds * 1000 / TestNum).ToString() + " us    ";}
4.多个输入口状态读取速度测试函数如下。
//多个输入口状态读取交互速度测试private void ReadInTest_Click(object sender, EventArgs e){    int j, k;    int testNum = Convert.ToInt32(TestNum.Text.ToString());    int readInNum = Convert.ToInt32(ReadInNum.Text.ToString());    //快速读取输入口状态接口时间测试    byte[] InState = new byte[4];    DateTime beforeDT = System.DateTime.Now;    for (int count = 0; count < testNum; count++)    {        zmcaux.ZAux_GetModbusIn(g_handle, 0, readInNum, InState);        if (count % 100 == 0)        {            for (int i = 0; i < 32; i++)            {                j = i / 8;                k = i % 8;                if (((InState[j] >> k) & 1) == 1)                {                    InStatus[i].BackColor = Color.FromArgb(200, 255, 200);                }                else                {                    InStatus[i].BackColor = Color.FromArgb(255200200);                }            }        }    }    DateTime afterDT = System.DateTime.Now;    //计算beforeDT与afterDT的时间差    TimeSpan ts = afterDT - beforeDT;    //总耗时 ms    ReadInTotTime.Text = ts.TotalMilliseconds.ToString("0.00");    //平均耗时 us    ReadInTime.Text = (ts.TotalMilliseconds * 1000 / testNum).ToString("0.00");}
5.多个输出口状态读取速度测试函数如下。
//多个输出口状态读取交互速度测试private void ReadOutTest_Click(object sender, EventArgs e){    int j, k;    int testNum = Convert.ToInt32(TestNum.Text.ToString());    int readOutNum = Convert.ToInt32(ReadOutNum.Text.ToString());    //快速读取输入口状态接口时间测试    byte[] OutState = new byte[4];    DateTime beforeDT = System.DateTime.Now;    for (int count = 0; count < testNum; count++)    {        zmcaux.ZAux_GetModbusOut(g_handle, 0, readOutNum, OutState);        if (count % 100 == 0)        {            for (int i = 0; i < 32; i++)            {                j = i / 8;                k = i % 8;                if (((OutState[j] >> k) & 1) == 1)                {                    OutStatus[i].BackColor = Color.FromArgb(200255200);                }                else                {                    OutStatus[i].BackColor = Color.FromArgb(255200200);                }            }        }    }    DateTime afterDT = System.DateTime.Now;    //计算beforeDT与afterDT的时间差    TimeSpan ts = afterDT - beforeDT;    //总耗时 ms    ReadOutTolTime.Text = ts.TotalMilliseconds.ToString("0.00");    //平均耗时 us    ReadOutTime.Text = (ts.TotalMilliseconds * 1000 / testNum).ToString("0.00");}
6.多个输出口状态设置速度测试函数如下。
//多个输出口状态设置交互速度测试private void WriteOutTest_Click(object sender, EventArgs e){    int testNum = Convert.ToInt32(TestNum.Text.ToString());    int writeOutNum = Convert.ToInt32(WriteOutNum.Text.ToString());    //快速读取输入口状态接口时间测试    byte[] OutState = new byte[4];    DateTime beforeDT = System.DateTime.Now;    for (int count = 0; count < testNum; count++)    {        zmcaux.ZAux_GetModbusOut(g_handle, 0, writeOutNum, OutState);    }    DateTime afterDT = System.DateTime.Now;    //计算beforeDT与afterDT的时间差    TimeSpan ts = afterDT - beforeDT;    //总耗时 ms    WriteOutTolTime.Text = ts.TotalMilliseconds.ToString("0.00");    //平均耗时 us    WriteOutTime.Text = (ts.TotalMilliseconds * 1000 / testNum).ToString("0.00");}

7.多个IO状态与上位机交互速度测试结果如下。

(1)32个输入输出口读写1000次,交互速度测试结果:

(2)32个输入输出口读写1W次,交互速度测试结果:

(3)32个输入输出口读写10W次,交互速度测试结果:

(4)32个输入输出口定时器实时交互的测试结果:




六、分析与结论

以上分别是对32个输入口的读速度,32个输出口的读速度,32个输出口的写速度进行测试,从上面的运行效果图的数据显示来看,无论是输入口还是输出口它们的交互速度都保持在200us左右,并且效果十分稳定。当测试次数从1000次增加到1W次,甚至10W次,平均每次的交互速度还是保持在200us左右。

测试次数

读32个输入口

读32个输出口

写32个输出口

1000

228.39us

197.47us

196.47us

1W

225.99us

195.29us

194.17us

10W

225.37us

194.59us

194.45us

完整代码获取地址

本次,正运动技术以太网IO控制卡:C#实时读写时间测试,就分享到这里。

更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。

本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。

关于正运动技术



深圳市正运动技术有限公司成立于2013年,专注于纯国产运动控制技术研究和通用运动控制软硬件平台和产品的研发,是国家级高新技术和专精特新“小巨人”企业。

正运动技术汇集了来自华为、中兴等公司的优秀人才。力求创新,目前公司拥有专利、著作权等知识产权五十余项。在坚持自主创新的同时,积极联合各大高校和科研院所协同运动控制基础技术的研究,是国内工控领域发展最快的企业之一,也是国内少有、完整掌握运动控制核心技术和实时工控软件平台技术的企业。

正运动技术除本部研发中心外,设有中山、武汉、上海三个研发分部。为更好地服务客户,本部之外设有苏州、东莞两个区域性服务中心,设有佛山、厦门、青岛、西安、武汉、成都、天津、郑州等销售和技术服务机构。

经过众多合作伙伴多年的开发应用,正运动技术的产品广泛地应用于3C电子、半导体、新能源、机器人、包装印刷、纺织服装、激光加工、医疗制药、数控机床、传统加工等领域。



运控CMCIA
《伺服与运动控制》双月刊是免费赠予国内读者的,包括自动化学会、厂商、院所及自动化有关部门、广大用户、科研、设计、图书单位的管理及技术人员,欢迎索阅。
 最新文章