第一作者:吴悠 博士研究生
通讯作者:彭永臻 教授
论文DOI: 10.1016/j.watres.2025.123101
氮去除性能
Fig. 1. Variation of (a) NH4+−N concentration of influent, effluent, and NH4+−N (ammonia) removal efficiency (ARE); (b) chemical oxygen demand (COD) concentration of influent, effluent, and COD removal efficiency (CRE); (c) NO2-−N, NO3-−N concentration in unit 4, and nitrite accumulation rate (NAR); (d) total inorganic nitrogen (TIN) concentration of influent, effluent, and removal efficiency (NRE). Copyright 2025, Elsevier Inc.
在整个运行过程中,中试规模系统的 NH4+-N去除率 (ARE) 稳定在 93.1 ± 4.5% 到 95.7 ± 2.8% 之间。在第一阶段未投加HA时(第 1-65 天),进水和出水的总无机氮 (TIN)分别为 19.8 ± 3.2 mg/L和6.0 ± 2.3 mg/L,相应的总氮去除率 (NRE) 为 70.6 ± 7.3%。在第二阶段(第 66-106 天),连续添加 HA将亚硝累积率 (NAR) 提高到 50.8%,出水 TIN 降低到 3.9 ± 1.6 mg/L,并将NRE提高到82.9±6.2%。在第三阶段(第 107-183 天),HRT缩短至8 h,NAR 稳定在67.6±4.6%,出水TIN进一步降至2.9±1.3 mg/L,NRE达到 84.2±5.5%。在HA投加期间,厌氧释磷量达到峰值 6.4 mg/L,在第三阶段稳定在1.9±0.4 mg/L。
脱氮路径
Fig. 2. Variations of inorganic nitrogen in each unit: (a) day 31 to 34 in Phase Ⅰ; (b) day 94 to 98 in Phase Ⅱ; (c) day 153 to 155 in Phase Ⅲ. Variations of (d) nitrogen removal contribution during each process, the black circle represents the mean, and the black bar represents the quartile (25–75%) line; (e) nitrogen removal rate during the anoxic process of thesystem. (f) Variations of intracellular carbon sources (PHAs and Gly) in different operational phases: (days 31 to 34 in Phase I, 94 to 98 in Phase II, and153 to 155 in Phase III). Copyright 2025, Elsevier Inc.
HA投加后,系统好氧段硝氮生成量显著减少,且出现了明显的亚硝积累。系统好氧段脱氮贡献从第一阶段的2.4±3.4%升高至25.8±8.1%,同时系统缺氧段总氮去除速率显著提高,由1.63 mg N/(L·h)提升至2.35 mg N/(L·h)。
多组学分析
Fig. 3. Variations in abundance (TPM value) of functional genes related to a) nitrogen metabolism; and b) phosphorus metabolism for the sludge samples on day 57 and day 162 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Copyright 2025, Elsevier Inc.
Fig. 4. Variations in transcript level (FPKM value) of functional genes related to a) nitrogen metabolism; and b) phosphorus metabolism for the sludge samples on day 57 and day 162 based on the KEGG database. Row normalizations were conducted to compare variations of different stages. Copyright 2025, Elsevier Inc.
通过宏基因组和宏转录组分析,Nitrospira菌属的转录活性下降,控制亚硝硝化的nxr基因转录水平也出现了下降,进一步促进了短程硝化的形成。HA 影响了 PAOs 的代谢,在厌氧阶段过度释磷导致了细胞内poly-P的过度消耗,而在好氧阶段ppk 的表达受到抑制,阻碍了poly-P的合成,这使得作为PAOs供能途径的poly-P循环在一定程度上被破坏,从而抑制了 PAOs的活性,有利于 GAOs在碳源竞争中获得占优。Ca. Competibacter作为内源反硝化的主要贡献者,相对丰度由0.16%显著提升至1.13%。总而言之,这些转变促进了中试规模AOA 系统的深度脱氮。
本研究首次在中试规模AOA系统中验证了低浓度HA连续投加的高效性和稳定性。研究表明,HA通过调控微生物群落和代谢路径,显著提升了系统的内源反硝化性能,尤其是GAOs在内源代谢中的主导作用。尽管该方法在实现同步脱氮除磷方面仍有改进空间,但在低碳氮比废水处理中展示了巨大潜力。未来工作应进一步优化HA的投加方案,并探索其在实际规模中实现氮磷协同去除的潜力。同时,需要针对不同进水条件和长期运行中的可能问题进行深入研究,以支撑该策略在工程应用中的推广。
Wu, Y., Wang, H., Zhang, L., Zeng, W. and Peng, Y. 2025. Multi-omics reveals mechanism of hydroxylamine-enhanced ultimate nitrogen removal in pilot-scale anaerobic/aerobic/anoxic system. Water Res 274, 123101
https://www.sciencedirect.com/science/article/pii/S0043135425000156?via%3Dihub
欢迎参会! 水务双碳与新质生产力专题论坛|2025全国水科技大会暨技术装备成果展览会