高压绕组线圈槽部直线部分绝缘防电晕处理
科技
工业农业
2024-11-17 07:31
山西
高压绕组线圈槽部直线部分绝缘外表面与槽壁之间存在间隙,绝缘外表面与槽壁之间的间隙法向场强,在未作防晕处理时,可视为双层介质的平板电容器,即绝缘表面单位面积电容与嵌线间隙单位面积的体积电容。它的存在将使绕组线圈表面对地电压提高。在设计中嵌线的单边间隙通常控制在0.35mm以下;绕组线圈单边厚度若按通常6kV电压级为2.0mm、10kV电压级为3.0mm,在这一设定的情况下间隙法向场强的幅值也将增大。依据计算和验证:均匀电场的起始电离场强为60kV/cm;通风槽口为不均匀电场,其起始场强为8.1kV/cm,不均匀电场起晕场强幅值为11.4kV/cm。所以在6kV电压级绕组线圈槽部绝缘表面其法向场强和轴向场强都处于起晕临界状态,而对10kV电压级及以上更高电压等级的电动机绕组线圈的相部就必将产生电晕。
为防止槽部电晕,高压绕组线圈槽部直线部分绝缘,搭接绕包一层下级无溶剂整浸渍超薄型,厚度为0.06mm×25mm低阻防电晕带,使通风槽口不均匀电场分布较为均匀,以降低轴向场强,尤其是在绕组线圈、定子铁心和槽口经防电晕处理之后,槽隙阻抗比防电晕层表面电阻大得多,槽隙间距大小对起始放电电压已失去影响。所以,再缩小槽隙间距势必使嵌线的槽隙公差,并将其控制在0.35mm以下已没必要。因为这将会使嵌线工艺极其困难,同时过小的嵌线间隙将会使具有防晕层的绕组线圈表面,在嵌线过程中破坏防电晕层和主绝缘,而达不到我们所预期效果。
另外,根据巴申定律和气体放电试验所验证的数据和结论,具有防晕绝缘结构的绕组线圈对铁心槽壁的电压高低,取决于主绝缘厚度、介电系数、防电晕表面电阻率和线圈与铁心槽壁接触点之间的长度。如若防电晕层的电阻很低,则只要防晕层有一点稳定的接地点,即可将绕组线圈表面与槽壁间的间隙全部短路。因为低阻防电晕层与槽壁接触部位已处于低地电位,即将使间隙相对短路而消除了电容,此时也就不会再产生电晕。但是,我们都知道降低防电晕层表面电阻率,是降低绝缘表面对地电压最有效措施,可是当ρs<102Ω·m时,将会增加防电晕层表面涡流损耗和防晕层主磁通感应电压所引发的电导损耗。因此,为了降低防晕层的损耗,实际上防电晕层的电阻率又不能过低。一般情况下,允许防晕层的单位体积中的损耗为3mW/cm3,其相应的防电晕层最小电阻率为103-105Ω·m是合理的。而高于此限也就会产生绕组线圈表面与槽壁接触点较远的防电晕层部位不能处于地电位,而其电位的大小是由电容电流在低电阻率的防电晕层上所产生的压降来决定它的电位。所以从设计角度来考虑,尤其是热固性绝缘的线圈表面与槽壁接触点的点距较大,线圈表面对地电压又几乎按线圈表面与铁心槽壁接触点与接触点之间长度倍数的二次方而增高。所以,只能采取有效的工艺措施,最大限度地缩短线圈表面与铁心槽壁接触点与接触点之间的长度,才是降低线圈表面对地电压和防止电晕产生的最重要的方法。以上非官方发布内容,仅代表个人观点。
往期回顾
高压定子绕组端部振动力的危害
电机铁芯冲片材料要求浅析
永磁材料性能及在电机中的应用
由“电机技术日参”原创,如需转载,请登录新榜网站版权频道
(http://cc.newrank.cn)