👇👇👇免费进学习群!
以微课堂学习群
奥数国家级教练与四名特级
教师联手执教。
文章来源:王通博初中数学,ID:wtbmaths
往期链接:
初中几何 9大模型:(1)半角模型
重要几何模型4--费马点模型
费马点的确切定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。
它是这样确定的:
1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;
2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
费马点的性质:费马点有如下主要性质:
1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
费马点最小值快速求解:
费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.
秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值
例题1. 如图,矩形ABCD是一个长为1000米,宽为600米的货场,A、D是入口,现拟在货场内建一个收费站P,在铁路线BC段上建一个发货站台H,设铺设公路AP、DP以及PH之长度和为l,求l的最小值.
变式练习>>>
1.如图,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A,D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B,C两点)开一个货物入口M,并修建三条专用车道PA,PD,PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)
注 本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.
变式练习>>>
2.若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4, 求PB的值.
例题3. 已知:△ABC是锐角三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°.
求证:GA+GB+GC的值最小.
变式练习>>>
3.如图,点P是三角形边长为1的等边内的任意一点,求PA+PB+PC的取值范围.
例题4. 如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、
B两点,且与x轴交于另一点C.
(1)求b、c的值;
(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;
(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR
①求证:PG=RQ;
②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.
温馨提示
试卷word打印版获取方法:点击阅读原文加学习群获取。
需要试卷电子打印版点击"阅读原文