八上数学:知识点总结归纳

教育   2024-11-23 19:07   江苏  


👇👇👇免费进学习群



以微课堂学习群

         奥数国家级教练与四名特级

教师联手执教。



第一章 三角形全等

一、全等三角形的定义

1、全等三角形:

能够完全重合的两个三角形叫做全等三角形 

 

2、理解:

1)全等三角形形状大小完全相等,与位置无关;

2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等

3)三角形全等不因位置发生变化而改变。

 

、全等三角形的性质

1、全等三角形的对应边相等、对应角相等 

理解:

1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;

2)对应角的对边为对应边,对应边对的角为对应角。


2、全等三角形的周长相等面积相等


3、全等三角形的对应边上的对应中线、角平分线、高线分别相等

 

、全等三角形的判定

1、边角边公理(SAS)  有两边和它们的夹角对应相等的两个三角形全等。


2、角边角公理(ASA)  有两角和它们的夹边对应相等的两个三角形全等。


3、推论(AAS)  有两角和其中一角的对边对应相等的两个三角形全等。


4、边边边公理(SSS)  有三边对应相等的两个三角形全等。


5、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

 

、证明两个三角形全等的基本思路

1、已知两边:

1找第三边(SSS);

2)找夹角(SAS);

3)找是否有直角(HL)。


2、已知一边一角:

1)找一角(AASASA);

2)找夹边(SAS


3、已知两角:

1)找夹边(ASA);

2)找其它边(AAS


第二章 轴对称

 轴对称图形

  相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

 

 轴对称的性质

1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线


2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线

 

、线段的垂直平分线

1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。 


2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。


3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等

 

、角的角平分线

1、性质定理:角平分线上的点到角两边的距离相等。 


2、判定定理:到角两个边距离相等的点在这个角的角平分线上。


3、拓展:三角形三个角的角平分线的交点到三条边的距离相等。

 

、等腰三角形

1、性质定理:

1)等腰三角形的两个底角相等(等边对等角)

2)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一) 


2、判断定理:

一个三角形的两个相等的角所对的边也相等。(等角对等边)

 

、等边三角形

1、性质定理:

1)等边三角形的三条边都相等

2)等边三角形的三个内角都相等,都等于60°


2、拓展:等边三角形每条边都能运用三线合一这性质。


3、判断定理:

1)三条边都相等的三角形是等边三角形

2)三个角都相等的三角形是等边三角形

3)有两个角是60°的三角形是等边三角形 

4)有一个角是60°的等腰三角形是等边三角形。

 

、直角三角形推论

1、直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半


2、直角三角形中,斜边上的中线等于斜边的一半


3、拓展:直角三角形常用面积法求斜边上的高


第三章 勾股定理

一、基本定义

1、勾:直角三角形较短的直角边 


2、股:直角三角形较长的直角边 


3、弦:斜边

 

、勾股定理

1、定理:

   直角三角形两直角边ab的平方和等于斜边c的平方,即a2b2c2

 

、勾股定理的逆定理

1、定理:

如果三角形的三边长abc有关系a2b2c2,那么这个三角形是直角三角形。

 

、勾股数

1、定义:

满足a2b2c2的三个正整数,称为勾股数。

 

2、常见勾股数:

3,4,5;6,8,10;9,12,15;5,12,13。 

 

、简单运用

1、勾股定理——常用于求边长、周长、面积:

理解:

1)已知直角三角形的两边求第三边,并能求出周长、面积。     

2)用于证明线段平方关系的问题。

3)利用勾股定理,作出长为的线段

 

2、勾股定理的逆定理——常用于判断三角形的形状:

理解:

1)确定最大边(不妨设为c)

2)c2a2b2,则△ABC是以∠C为直角的三角形

3)a2b2c2,则此三角形为钝角三角形(其中c为最大边)

4)a2b2c2,则此三角形为锐角三角形(其中c为最大边)     

(5)难点:运用勾股定理立方程解决问题。

 

第四章 实数

、平方根

1、定义:一般地,如果x2=a(a≥0),那么这个数x就叫做a的平方根(或二次方根)。


2、表示方法:正数a的平方根记做,读作“正、负根号a”。


3、性质:

1)一个正数有两个平方根,它们互为相反数

2)零的平方根是零

3)负数没有平方根。 

 

、开平方

1、定义:求一个数a的平方根的运算,叫做开平方。

  

、算术平方根

1、定义:

一般地,如果x2=a(a≥0),那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0 


2、表示方法:

记作,读作“根号a”。


3、性质:

①一个正数只有一个算术平方根

②零的算术平方根是零

③负数没有算术平方根。 


4、注意的双重非负性

    

 

、立方根

1、定义:

一般地,如果x3=a那么这个数x就叫做的立方根(或三次方根)。


2、表示方法:

记作,读作“三次根号a”。


3、性质:

1)一个正数有一个正的立方根

2)一个负数有一个负的立方根

3)零的立方根是零。


4、注意:


  ,这说明三次根号内的负号可以移到根号外面。


5、



、开立方

1、定义:

求一个数a的立方根的运算,叫做开立方。

 

、实数定义与分类

1、无理数:无限不循环小数叫做无理数。

  理解:常见类型有三类

  (1)开方开不尽的数:如

  (2)有特定意义的数:如圆周率π,或化简后含有π的数,如π+8

  (3)有特定结构的数:如0.1010010001……等;(注意省略号)


2、实数:

  有理数和无理数统称为实数。


3、实数的分类:

1)按定义来分

2)按符号性质来分


、实数比较大小法理解

1、正数大于零,负数小于零,正数大于一切负数。


2、数轴比较:数轴上的两个点所表示的数,右边的总比左边的大。


3、绝对值比较法:两个负数,绝对值大的反而小。


4、平方法:ab是两负实数,若a2b2,则ab

 

、实数的运算

1、六种运算:加、减、乘、除、乘方、开方


2、实数的运算顺序:

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。


3、实数的运算律:

加法交换律、加法结合律 、乘法交换律、乘法结合律 、乘法对加法的分配律。


、近似数

1、定义:

     由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数


2、四舍五入法:

取近似值的方法——四舍五入法。

 

、科学记数法

1、定义:

 把一个数记为科学计数法

 

十一、实数和数轴

1、每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。


2、实数与数轴上的点是一一对应的关系。

 

第五章 平面直角坐标系

在平面内,确定物体的位置一般需要两个数据

 

、平面直角坐标系及有关概念

1、平面直角坐标系

1)定义:在平面内,两条互相垂直且有公共原点数轴,组成平面直角坐标系

2)坐标轴:其中,水平的数轴叫做x横轴,取向右为正方向;铅直的数轴叫做y纵轴,取向上为正方向;x轴和y轴统称坐标轴

3)原点:它们的公共原点O称为直角坐标系的原点

4)坐标平面:建立了直角坐标系的平面,叫做坐标平面


2、象限:

1)定义:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限第二象限第三象限第四象限

2)注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

 

3、点的坐标的概念:

1)对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数ab分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P坐标

2)点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

3)平面内点的坐标是有序实数对,当ab时,(ab)和(ba)是两个不同点的坐标。

4)平面内点的与有序实数对(坐标)是一一对应的关系。

 

4、不同位置的点的坐标的特征:

1)各象限内点的坐标的特征:

P(x,y)在第一象限:x>0,y>0 P(x,y)在第二象限:x<0,y>0

P(x,y)在第三象限:x<0,y<0 P(x,y)在第四象限:x>0,y<0

 

2)坐标轴上的点的特征:

P(x,y)x轴上:y=0x为任意实数

P(x,y)y轴上:x=0y为任意实数。

P(x,y)既在x轴上,又在y轴上:即是原点坐标为(00)。

 

3)两条坐标轴夹角平分线上点的坐标的特征:

P(x,y)在第一、三象限夹角平分线(直线y=x)上:xy相等

P(x,y)在第二、四象限夹角平分线(直线y=-x)上:xy互为相反数。

 

4)和坐标轴平行的直线上点的坐标的特征:

位于平行于x轴的直线上的各点的纵坐标相同

位于平行于y轴的直线上的各点的横坐标相同。

 

5)关于x轴、y轴或原点对称的点的坐标的特征:

P与点p’关于x轴对称:横坐标相等,纵坐标互为相反数,即点Pxy)关于x轴的对称点为P’(x-y

P与点p’关于y轴对称:纵坐标相等,横坐标互为相反数,即点Pxy)关于y轴的对称点为P’(-xy

P与点p’关于原点对称:横、纵坐标均互为相反数,即点Pxy)关于原点的对称点为P’(-x-y

 

6)P(x,y)到坐标轴及原点的距离:

P(x,y)到x轴的距离等于|y|

P(x,y)到y轴的距离等于|x|

P(x,y)到原点的距离等于

第六章 一次函数

、函数 

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量y是因变量 

 

、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。 

 

、函数的三种表示法

1、关系式(解析)法:

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。 


2、列表法:

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 


3、图象法:

用图象表示函数关系的方法叫做图象法。 

 

、由函数关系式画其图像的一般步骤

1、列表:

列表给出自变量与函数的一些对应值 


2、描点:

以表中每对对应值为坐标,在坐标平面内描出相应的点


3、连线:

按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

 

、正比例函数和一次函数概念与性质

1、正比例函数和一次函数的概念:

1)一般地,若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。


(2)特别地,当一次函数y=kx+b中的b=0时(即)(k为常数,k0),称y是x的正比例函数。


3)正比例函数是特殊的一次函数



2、一次函数的图像:

所有一次函数的图像都是一条直线

 

3、一次函数、正比例函数图像的主要特征:

1)一次函数y=kx+b的图像是经过点(0,b)的直线

2)正比例函数y=kx的图像是经过原点(0,0)的直线

 

4、正比例函数的性质:

一般地,正比例函数y=kx有下列性质:

1)k>0时,图像经过第一、三象限,y随x的增大而增大

2)k<0时,图像经过第二、四象限,y随x的增大而减小。

 

5、一次函数的性质:

一般地,一次函数y=kx+b有下列性质:

1)k>0时,y随x的增大而增大

2)k<0时,y随x的增大而减小

 

、正比例函数和一次函数解析式的确定

1、确定一个正比例函数,就是要确定正比例函数y=kxk≠0)中的常数k


2、确定一个一次函数,需要确定一次函数y=kx+b(k≠0)中的常数kb


3、解这类问题的一般方法是待定系数法


4、具体方法:过点必代,交点必联。

 

、一次函数与一元一次方程的关系

1、任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数(y)值为0时,即kx+b=0就与一元一次方程完全相同


2、由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值 


3、从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值

来源网络 侵删

温馨提示

试卷word打印版获取方法:点击阅读原文加学习群获取

   《以微课堂》,江苏省数学名师、数学奥林匹克国家级教练员联手四名特级教师共同打造

七年级数学微课大全

八年级数学微课大全

完整版!中考数学复习大全

 需要试卷电子打印版点击"阅读原文

以微课堂
奥数国家级教练与四名特级教师联手打造,初中数学精品微课堂。
 最新文章