0
内容提要
独AI不如众AI,AIstructure二次开发接口API对外开放试用,欢迎一起AI!
AIstructure的核心功能是根据建筑设计结果,利用AI完成结构方案的设计。所以建筑设计资料是AIstructure的关键输入。
我们调研了多个设计院的建筑设计流程,发现现在建筑设计软件五花八门,虽然AIstructure-Copilot提供了最为常用的CAD和天正建筑平面图输入功能,但是仍然难以满足用户多种多样的需求。
于是,我们决定开放AIstructure的API接口,这样无论用户使用哪种建筑设计软件,只要按照API的接口标准调用AIstructure的API,就可以完成智能结构设计,从而更好的服务不同用户的设计流程。
目前,我们对外开放了剪力墙-梁-楼板-荷载智能化设计接口API、剪力墙-梁-楼板PKPM模型生成接口API、剪力墙结构材料用量智能化预测接口API、剪力墙结构力学性能智能化预测接口API。
11月1日,我们在China Rock2024举办的技术培训会上公开了该接口,并进行了详细介绍,可参见以下视频:
0
API接口功能
API的功能如下图所示,通过输入标准化格式的数据(标准化格式参见格式说明PDF),得到结构设计或者对应性能。
(1)输入建筑JSON数据,可生成对应的剪力墙-梁-楼板-荷载结构设计数据,该结构设计以JSON数据格式存储,并反馈输出JSON文件的下载链接;
(2)输入建筑JSON数据,生成对应的剪力墙-梁-楼板-荷载的PKPM模型,直接反馈输出JWS的模型下载链接;
(3-4)输入剪力墙结构设计的JSON数据,分别生成对应的剪力墙结构材料用量和力学性能指标,直接反馈输出指标的JSON数据下载链接。
1
数据格式说明
采用JSON的“键-值”半结构化数据表示,数据结构如下:
(1)第一层(1)第一层
DesignConditions:设计条件,字典类型
StdStories:标准层信息,字典类型
NaturalStories:自然层信息,字典类型
(2)第二层,以StdStories为例:
StdStories:
StdStoryID:标准层ID
Elements:构件对象集合,字典类型
ArchiSpaces:空间对象集合,字典类型
StoryConditions:标准层的设计条件(包含构件尺寸、混凝土等级),字典类型
ImageConditions:绘图条件(将CAD真实坐标转化为像素图的坐标),字典类型
AlignPoint:多标准层的对齐坐标,字典类型
(3)第三层,以Elements为例:
StdStories:
Elements:
{"ArchiWalls": [element, element, ......, element]}(建筑墙)
{"WinDoors": [element, element, ......, element]}(门窗)
{"CandiBeams": [element, element, ......, element]}(空间分割)
{"ShearWalls": [element, element, ......, element]}(剪力墙)
{"Beams": [element, element, ......, element]}(梁)
其中,element是通用的构件属性,详细说明如下:element={"type", "id", "xs", "ys", "xspix", "yspix", "props"}
当然还有更多的数据内容,我们在数据说明的PDF中有详细说明,有遗漏之处,请联系我们进行补充。
2
剪力墙-梁-楼板-荷载智能化设计接口
异步接口:分为(1)上传文件、(2)获取设计状态两个接口;接口的测试可采用Postman等接口测试工具。
(1)文件上传
(1.1)请求接口:
(1.2)请求参数说明:
Params:
Body:
Headers:
(1.3)反馈结果(JSON格式):
{
"status": 200,
"msg": "上传成功",
"data":
{
"id": 1889,
"project_name": "20241030114823_hemu_test_965494",
"archi": "staging/data/project_data/20241030114823_hemu_test_965494/shearwall_userinput_archi.json“
}
}
(2)获取设计状态
(2.1)请求接口:
(2.2)请求参数说明:
Params:
Headers:
(2.3)反馈结果(JSON格式):
{
"status": 200,
"msg": "已获取当前设计状态",
"data": {
"result_json": "https://aistructure-backend.staging.ai-structure.com/wallBeamCmq/download?fileName=staging/data/project_data/20241030114823_hemu_test_965494/shearwall_load_s5_a0_shearwallslabs4a0shearwalloptswallbeams6a1shearwalloptswallbeams6a0shearwallbeams2a2shearwalls1a2json.json",
"project_name": "20241030114823_hemu_test_965494",
"status": "SUCCESS"}
}
3
接口说明文件
前面仅简单介绍了一个典型接口,其他接口,请详见链接附件
接口使用文档下载链接:https://yunpan.swjtu.edu.cn/link/AA607E19775E644B1BBD0E4348248B2DF4
欢迎试用,有问题请随时联系我们。
4
结语
我们开放了AIstructure的API接口,开发工程师可使用自己习惯的建筑设计软件进行二次开发,按照API的接口标准调用AIstructure的API,就可以完成智能结构设计,从而更好的服务不同用户的设计流程。
目前对外开放了剪力墙-梁-楼板-荷载智能化设计接口API、剪力墙-梁-楼板PKPM模型生成接口API、剪力墙结构材料用量智能化预测接口API、剪力墙结构力学性能智能化预测接口API。
AIstructure-Copilot是由北京合木智构科技有限公司、清华大学、西南交通大学联合开发的建筑结构智能设计软件。该软件为CAD插件,可以根据建筑平面布置,自动调用部署于云平台的智能算法,完成结构构件的布置和设计,并输出CAD平面图和PKPM模型。
软件下载地址:https://ai-structure.com/#/IntelligentDesign
后续,我们还将不断完善相关产品功能。欢迎大家持续关注我们的工作,多多支持!
温馨提示:为更好使用AI设计工具,请仔细阅读使用说明书。
联系方式
QQ群,AI-structure-交流群:741840451
廖文杰:liaowj@swjtu.edu.cn
--End--
AIstructure-Copilot V0.3.0 增加图层自动提取功能,墙梁联合优化改进设计效果(20241018)
AIstructure官网全面升级,英文版上线(20240909)
AIstructure-Copilot-V0.2.9 梁布置设计算法改进(20240830)
AIstructure-Copilot-v0.2.8软件全过程操作演示视频(20240809)
AIstructure-Copilot-V0.2.8软件使用温馨小贴士(20240726)
结构生成式智能设计AI-structure 2024上半年小结(20240628)
AIstructure-Copilot-v0.2.7技术背景(1):基于PKPM API的自动化建模和计算分析(20240522)
AIstructure-Copilot-v0.2.7:新增后处理功能,云端完成PKPM结构计算和AIstructure优化(20240520)
AIstructure-Copilot-v0.2.6:给马儿换上精饲料,AIstructure设计效果持续改善(20240511)
AIstructure-Copilot-v0.2.2:梁布置设计功能更新(20240308)
AIstructure-Copilot-v0.1.7功能更新:实现多标准层的PKPM/YJK自动建模(20231222)
AIstructure-Copilot实现“三驾马车”驱动:Diffusion Model智能设计上线!(20231103)
AIstructure-Copilot-v0.1.2更新:精细化考虑抗震设计条件影响的全新GNN版本,请您来试试(20230928)
ai-structure.com:剪力墙结构材料用量AI预测模块上线测试(20230731)
AIstructure-Copilot:嵌入CAD平台的结构智能设计助手(20230711)
建筑结构生成式智能设计在日内瓦国际发明展上获“评审团特别嘉许金奖”(20230519)
ai-structure.com:土木工程自然语言规则AI解译模块上线测试(20230513)
AI剪力墙设计问卷调查结果(20230508)
相关论文
Liao WJ, Lu XZ, Huang YL, Zheng Z, Lin YQ, Automated structural design of shear wall residential buildings using generative adversarial networks, Automation in Construction, 2021, 132, 103931. DOI: 10.1016/j.autcon.2021.103931.
Lu XZ, Liao WJ, Zhang Y, Huang YL, Intelligent structural design of shear wall residence using physics-enhanced generative adversarial networks, Earthquake Engineering & Structural Dynamics, 2022, 51(7): 1657-1676. DOI: 10.1002/eqe.3632.
Zhao PJ, Liao WJ, Xue HJ, Lu XZ, Intelligent design method for beam and slab of shear wall structure based on deep learning, Journal of Building Engineering, 2022, 57: 104838. DOI: 10.1016/j.jobe.2022.104838.
Liao WJ, Huang YL, Zheng Z, Lu XZ, Intelligent generative structural design method for shear-wall building based on “fused-text-image-to-image” generative adversarial networks, Expert Systems with Applications, 2022, 118530, DOI: 10.1016/j.eswa.2022.118530.
Fei YF, Liao WJ, Zhang S, Yin PF, Han B, Zhao PJ, Chen XY, Lu XZ, Integrated schematic design method for shear wall structures: a practical application of generative adversarial networks, Buildings, 2022, 12(9): 1295. DOI: 10.3390/buildings1209129.
Fei YF, Liao WJ, Huang YL, Lu XZ, Knowledge-enhanced generative adversarial networks for schematic design of framed tube structures, Automation in Construction, 2022, 144: 104619. DOI: 10.1016/j.autcon.2022.104619.
Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent design of shear wall layout based on attention-enhanced generative adversarial network, Engineering Structures, 2023, 274, 115170. DOI: 10.1016/j.engstruct.2022.115170.
Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent beam layout design for frame structure based on graph neural networks, Journal of Building Engineering, 2023, 63, Part A: 105499. DOI: 10.1016/j.jobe.2022.105499.
Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent design of shear wall layout based on graph neural networks, Advanced Engineering Informatics, 2023, 55, 101886, DOI: 10.1016/j.aei.2023.101886
Liao WJ, Wang XY, Fei YF, Huang YL, Xie LL, Lu XZ*, Base-isolation design of shear wall structures using physics-rule-co-guided self-supervised generative adversarial networks, Earthquake Engineering & Structural Dynamics, 2023, DOI:10.1002/eqe.3862.
Feng YT, Fei YF, Lin YQ, Liao WJ, Lu XZ, Intelligent generative design for shear wall cross-sectional size using rule-embedded generative adversarial network, Journal of Structural Engineering-ASCE, 2023, 149(11). 04023161. DOI:10.1061/JSENDH.STENG-12206.
Fei YF, Liao WJ, Lu XZ*, Guan H*, Knowledge-enhanced graph neural networks for construction material quantity estimation of reinforced concrete buildings, Computer-Aided Civil and Infrastructure Engineering, 2023, DOI: 10.1111/mice.13094.
Zhao PJ, Fei YF, Huang YL, Feng YT, Liao WJ, Lu XZ*, Design-condition-informed shear wall layout design based on graph neural networks, Advanced Engineering Informatics, 2023, 58: 102190. DOI: 10.1016/j.aei.2023.102190.
Fei YF, Liao WJ, Lu XZ*, Taciroglu E, Guan H, Semi-supervised learning method incorporating structural optimization for shear-wall structure design using small and long-tailed datasets, Journal of Building Engineering, 2023, DOI:10.1016/j.jobe.2023.107873
Liao WJ, Lu XZ*, Fei YF, Gu Y, Huang YL, Generative AI design for building structures, Automation in Construction, 2024, 157: 105187. DOI: 10.1016/j.autcon.2023.105187
Zhao PJ, Liao WJ, Huang YL, Lu XZ*, Beam layout design of shear wall structures based on graph neural networks, Automation in Construction, 2024, 158: 105223. DOI: 10.1016/j.autcon.2023.105223
Qin SZ, Liao WJ*, Huang SN, Hu KG, Tan Z, Gao Y, Lu XZ, AIstructure-Copilot: assistant for generative AI-driven intelligent design of building structures, Smart Construction, 2024, DOI: 10.55092/sc20240001
Gu Y, Huang YL, Liao WJ, Lu XZ*, Intelligent design of shear wall layout based on diffusion models, Computer-Aided Civil and Infrastructure Engineering, 2024, DOI: 10.1111/mice.13236
Fei YF, Liao WJ, Zhao PJ, Lu XZ*, Guan H, Hybrid surrogate model combining physics and data for seismic drift estimation of shear-wall structures, Earthquake Engineering & Structural Dynamics, 2024, DOI: 10.1002/eqe.4151
Han J, Lu XZ, Gu Y, Cai Q, Xue HJ, Liao WJ, Optimized data representation and understanding method for the intelligent design of shear wall structures, Engineering Structures, 2024, 315: 118500. DOI: 10.1016/j.engstruct.2024.118500
Qin SZ, Guan H, Liao WJ, Gu Y, Zheng Z, Xue HJ, Lu XZ*, Intelligent design and optimization system for shear wall structures based on large language models and generative artificial intelligence, Journal of Building Engineering, 2024, 95: 109996. DOI: 10.1016/j.jobe.2024.109996
Wang ZH, Yue Y, Chen Y, Liao WJ, Li CS, Hu KG, Tan Z, Lu XZ. Expert experience-embedded evaluation and decision-making method for intelligent design of shear wall structures. Journal of Computing in Civil Engineering-ASCE, 2025, 39(1). DOI: 10.1061/JCCEE5.CPENG-6076
学术报告视频
论文和专利
---End--