生成式智能设计是否可以用于既有建筑加固?可以! | 新论文:钢筋混凝土框架结构BRB加固设计方案的智能生成与优化方法

学术   2024-11-15 07:40   泰国  

论文:Intelligent Generation and Optimization Method for the Retrofit Design of RC Frame Structures using Buckling-Restrained Braces

DOI:https://doi.org/10.1002/eqe.4268

5分钟视频介绍:


0

太长不看版

      生成式智能设计在新建建筑的结构设计上已经得到了很好的应用,那这个技术是否还可以进一步扩展到既有建筑的加固设计呢?本文以既有混凝土框架结构BRB加固为例,对生成式智能设计用于既有建筑加固进行了探索。

      随着城市化加速和建筑使用年限的增加,大量既有混凝土框架结构亟需加固改造。屈曲约束支撑(BRB)是一种高效的加固方法,能提高结构刚度和耗能减震性能。而本研究提出了一种结合生成式AI与优化算法的两阶段智能设计方法,第一阶段根据建筑需求,利用生成式AI确定BRB可布置位置,第二阶段根据结构要求,通过优化算法确定具体布置位置及尺寸,从而提升BRB加固方案设计的效率与质量。

图1 结合生成式AI与优化算法的BRB加固方案两阶段智能设计


1

研究背景

      既有钢筋混凝土框架结构加固的问题,本质上就是一场“中老年建筑的健康改造行动”。而我们重点关注的,是一群年纪大了,“骨头”不硬了(刚度不足)的“老伙计”,风吹草动、轻微震动就能让它“骨头”咔咔作响,抗不住地震的折腾。而给建筑加BRB就相当于安个“护膝”,听起来简单,但工程师们还得反复试验“护膝”的位置和大小,只有“阅楼无数”的资深工程师上场,才能少走弯路,且依然耗时耗力

(图片采用DALL-E生成)

      那么怎样才能快速找到一个合适的加固方案呢?我们尝试将设计的建筑需求和结构要求拆解开来,BRB的布置位置由建筑需求和结构要求同时决定,而截面尺寸更多由结构要求决定。

      建筑需求难以定量表达,比如哪些位置可以安装支撑,哪些位置不宜安装支撑,这个要求比较复杂且含糊,适合采用AI算法学习。而结构要求需要定量确定,适合采用优化算法计算。

      因此,能不能让AI和优化算法“强强联手”,让加固设计更快更靠谱?——这就是本研究要解决的主要问题啦。

图2 建筑需求与结构要求的解耦


2

研究方法

2.1 一阶段:基于扩散模型的智能生成方法

       既有建筑加固中存在各类建筑需求,有门的地方不能乱放BRB,楼梯间周围最好不布置BRB,建筑功能空间中也不应布置BRB。结构工程师需要一处处核对,耗时耗力。而利用生成式AI方法高效的学习能力,可以快速确定BRB的可布置位置,使最终设计结果满足建筑需求。

我们在前期工作中利用多种生成式AI方法实现了结构的智能设计。其中扩散模型具有更精细的生成效果,因此本研究首先采用扩散模型(详见:Diffusion Model智能设计原理揭秘 | 论文和发明专利:基于扩散模型的剪力墙结构智能设计)在包含122张图纸的数据集上学习。工程师在这些图纸集上已经标明了根据建筑需求可以布置BRB的区域。通过学习后,只要给定建筑的功能布局,AI就可以和人类工程师一样迅速确定不影响建筑功能的BRB的可布置位置。

      为了保证建筑信息中各个构件的特征编码具有相同的权重与距离关系,采用我们之前提到的“硅基视觉大法”(详见:揭秘“硅基视觉大法”|剪力墙结构智能设计的数据表征与理解的优化方法),将梁、墙、柱等建筑和结构信息分别用单通道特征矩阵表示,并叠加在一起构建多通道特征输入方法,作为扩散模型的输入条件特征。并通过掩膜的引入缩小BRB布置的采样空间,使其更符合实际设计要求。

图3 扩散模型实现BRB可布置位置生成


       采用三项评价指标精确度Precision、召回率Recall以及f1_score,得到结果如下表所示。

表1 扩散模型实现BRB可布置位置生成结果


      从表中可以看出,扩散模型方法具有较高的召回率,能找到大多数实际的BRB可布置位置。总体而言,其f1_score接近90%,基本能实现对BRB可布置位置的合理预测。


2.2 二阶段:智能优化方法

       一阶段的智能生成方法在一定程度上减少了设计的优化变量,但优化变量的数量仍然较高,会导致优化的时间大幅增加。为了进一步提高优化效率,本研究引入了K-Means算法实现BRB可布置位置的聚类。

图4 K-Means算法实现BRB可布置位置聚类


       在确定优化变量后,设置相应的优化目标,由于本研究主要针对结构刚度不足问题进行加固,因此着重考虑弹性阶段的力学性能要求。构造连续可导函数,在超限时实现快速优化,同时也避免过度优化。


图5 层间位移角系数随层间位移角的变化情况(以x方向为例)


3

案例分析

       在多个案例上进行测试,验证方法的效果,采用本方法进行加固后得到的方案都满足层间位移角的规定,且基本符合建筑需求,具有较好的安全性和实用性。同时,方法平均用时在40分钟左右,进一步验证了方法具有较高的优化效率。

图6 两阶段BRB加固方案智能设计平面布置结果


图7 加固前后层间位移角结果


4

结语

本研究针对钢筋混凝土框架结构的BRB加固问题,提出了一种基于生成式AI和优化算法的两阶段智能设计方法,实现了建筑需求和结构要求的设计解耦。首先利用扩散模型,基于建筑特征生成BRB的可布置位置,大幅缩小优化解空间;随后结合优化算法,确定BRB的具体布置位置与尺寸,兼顾力学性能要求。结果表明,该方法具备良好的通用性与适用性,通过全流程自动化设计显著提高设计效率,保证加固方案的合理性与安全性,减少了对工程师经验的依赖,并在优化效率和结果可靠性之间实现平衡。

      当然目前研究主要考虑BRB加固初步方案的设计,尚存在不成熟之处,也欢迎各位专家、老师、同学共同交流探讨。



QQ群:

AI-structure-交流群:741840451

联络邮箱: 

陆新征:luxz@tsinghua.edu.cn

覃思中:qsz23@mails.tsinghua.edu.cn

廖文杰:liaowj@swjtu.edu.cn

--End--

9分钟视频演示智能设计完整操作流程

ai-structure.com联系方式

QQ群,AI-structure-交流群:741840451

商务问题请联系:

黄盛楠(huangshengnan@mail.tsinghua.edu.cn)

技术问题请联系:

廖文杰(liaowj17@tsinghua.org.cn)


ai-structure.com往期文章


  1. 独AI不如众AI,AIstructure二次开发接口API开放试用!(20241104)

  2. AIstructure-Copilot V0.3.0 增加图层自动提取功能,墙梁联合优化改进设计效果(20241018)

  3. AIstructure官网全面升级,英文版上线(20240909)

  4. AIstructure-Copilot-V0.2.9 梁布置设计算法改进(20240830)

  5. AIstructure-Copilot-v0.2.8软件全过程操作演示视频(20240809)

  6. AIstructure-Copilot-V0.2.8软件使用温馨小贴士(20240726)

  7. AIstructure-Copilot-v0.2.8:新增构件截面&荷载的显示与修改功能(20240712)

  8. 结构生成式智能设计AI-structure 2024上半年小结(20240628)

  9. AIstructure-Copilot-v0.2.7技术背景(1):基于PKPM API的自动化建模和计算分析(20240522)

  10. AIstructure-Copilot-v0.2.7:新增后处理功能,云端完成PKPM结构计算和AIstructure优化(20240520)

  11. AIstructure-Copilot-v0.2.6:给马儿换上精饲料,AIstructure设计效果持续改善(20240511)

  12. AIstructure-Copilot-v0.2.5:前处理功能持续更新,设计质量提升(20240419)

  13. AIstructure-Copilot-v0.2.4:新增错误提示功能,并更新多标准层设计功能(20240329)

  14. AIstructure-Copilot-v0.2.3:前处理与梁布置设计功能持续更新(20240315)

  15. AIstructure-Copilot-v0.2.2:梁布置设计功能更新(20240308)

  16. AIstructure-Copilot-v0.2.1.1:外围轴线封闭自动检测等功能更新(20240219)

  17. AIstructure-Copilot-v0.2.1:新界面!新功能!新设计!新研讨!(20240126)

  18. AIstructure2023:从智能设计云平台到AIstructure-Copilot(20231230)

  19. AIstructure-Copilot-v0.1.7功能更新:实现多标准层的PKPM/YJK自动建模(20231222)

  20. AIstructure更新:剪力墙结构GNN梁智能设计功能试用 + 智能设计云平台更新(20231208)

  21. AIstructure-Copilot-v0.1.5:自动生成YJK/PKPM建模文件(20231201)

  22. AIstructure-Copilot实现“三驾马车”驱动:Diffusion Model智能设计上线!(20231103)

  23. ai-structure.com更新:材料用量预测模块和网页架构更新(20231029)

  24. AIstructure-Copilot功能更新:框架-核心筒构件截面尺寸设计Copilot版本(20231008)

  25. AIstructure-Copilot-v0.1.2更新:精细化考虑抗震设计条件影响的全新GNN版本,请您来试试(20230928)

  26. AIstructure-Copilot-v0.1.1功能更新:1次设计,2个方案,3套模型(20230915)

  27. ai-structure.com:剪力墙结构材料用量AI预测模块上线测试(20230731)

  28. AIstructure-Copilot:嵌入CAD平台的结构智能设计助手(20230711)

  29. 建筑结构生成式智能设计在日内瓦国际发明展上获“评审团特别嘉许金奖”(20230519)

  30. ai-structure.com:新开源 GAN to PKPM/YJK的自动化建模程序(20230518)

  31. ai-structure.com:土木工程自然语言规则AI解译模块上线测试(20230513)

  32. AI剪力墙设计问卷调查结果(20230508)

  33. ai-structure.com | GAN-to-ETABS的自动化建模程序开源(20230503)

  34. ai-structure.com图神经网络(GNN)设计剪力墙功能上线(20230427)

  35. ai-structure.com v0.0.4新版上线(20230420)

  36. ai-structure.com剪力墙结构梁自动设计功能更新(20230329)

  37. ai-structure.com 开放内测一周简报(20230307)

  38. ai-structure.com 剪力墙结构生成式智能设计系统内测邀请(20230226)

相关论文

  1. Liao WJ, Lu XZ, Huang YL, Zheng Z, Lin YQ, Automated structural design of shear wall residential buildings using generative adversarial networks, Automation in Construction, 2021, 132, 103931. DOI: 10.1016/j.autcon.2021.103931.

  2. Lu XZ, Liao WJ, Zhang Y, Huang YL, Intelligent structural design of shear wall residence using physics-enhanced generative adversarial networks, Earthquake Engineering & Structural Dynamics, 2022, 51(7): 1657-1676. DOI: 10.1002/eqe.3632.

  3. Zhao PJ, Liao WJ, Xue HJ, Lu XZ, Intelligent design method for beam and slab of shear wall structure based on deep learning, Journal of Building Engineering, 2022, 57: 104838. DOI: 10.1016/j.jobe.2022.104838.

  4. Liao WJ, Huang YL, Zheng Z, Lu XZ, Intelligent generative structural design method for shear-wall building based on “fused-text-image-to-image” generative adversarial networks, Expert Systems with Applications, 2022, 118530, DOI: 10.1016/j.eswa.2022.118530.

  5. Fei YF, Liao WJ, Zhang S, Yin PF, Han B, Zhao PJ, Chen XY, Lu XZ, Integrated schematic design method for shear wall structures: a practical application of generative adversarial networks, Buildings, 2022, 12(9): 1295. DOI: 10.3390/buildings1209129.

  6. Fei YF, Liao WJ, Huang YL, Lu XZ, Knowledge-enhanced generative adversarial networks for schematic design of framed tube structures, Automation in Construction, 2022, 144: 104619. DOI: 10.1016/j.autcon.2022.104619.

  7. Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent design of shear wall layout based on attention-enhanced generative adversarial network, Engineering Structures, 2023, 274, 115170. DOI: 10.1016/j.engstruct.2022.115170.

  8. Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent beam layout design for frame structure based on graph neural networks, Journal of Building Engineering, 2023, 63, Part A: 105499. DOI: 10.1016/j.jobe.2022.105499.

  9.  Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent design of shear wall layout based on graph neural networks, Advanced Engineering Informatics, 2023, 55, 101886, DOI: 10.1016/j.aei.2023.101886

  10. Liao WJ, Wang XY, Fei YF, Huang YL, Xie LL, Lu XZ*, Base-isolation design of shear wall structures using physics-rule-co-guided self-supervised generative adversarial networks, Earthquake Engineering & Structural Dynamics, 2023, DOI:10.1002/eqe.3862.

  11. Feng YT, Fei YF, Lin YQ, Liao WJ, Lu XZ, Intelligent generative design for shear wall cross-sectional size using rule-embedded generative adversarial network, Journal of Structural Engineering-ASCE, 2023, 149(11). 04023161. DOI:10.1061/JSENDH.STENG-12206.

  12. Fei YF, Liao WJ, Lu XZ*, Guan H*, Knowledge-enhanced graph neural networks for construction material quantity estimation of reinforced concrete buildings, Computer-Aided Civil and Infrastructure Engineering, 2023, DOI: 10.1111/mice.13094.

  13. Zhao PJ, Fei YF, Huang YL, Feng YT, Liao WJ, Lu XZ*, Design-condition-informed shear wall layout design based on graph neural networks, Advanced Engineering Informatics, 2023, 58: 102190. DOI: 10.1016/j.aei.2023.102190.

  14. Fei YF, Liao WJ, Lu XZ*, Taciroglu E, Guan H, Semi-supervised learning method incorporating structural optimization for shear-wall structure design using small and long-tailed datasets, Journal of Building Engineering, 2023, DOI:10.1016/j.jobe.2023.107873

  15. Liao WJ, Lu XZ*, Fei YF, Gu Y, Huang YL, Generative AI design for building structures, Automation in Construction, 2024, 157: 105187. DOI: 10.1016/j.autcon.2023.105187

  16. Zhao PJ, Liao WJ, Huang YL, Lu XZ*, Beam layout design of shear wall structures based on graph neural networks, Automation in Construction, 2024, 158: 105223. DOI: 10.1016/j.autcon.2023.105223

  17. Qin SZ, Liao WJ*, Huang SN, Hu KG, Tan Z, Gao Y, Lu XZ, AIstructure-Copilot: assistant for generative AI-driven intelligent design of building structures, Smart Construction, 2024, DOI: 10.55092/sc20240001

  18. Gu Y, Huang YL, Liao WJ, Lu XZ*, Intelligent design of shear wall layout based on diffusion models, Computer-Aided Civil and Infrastructure Engineering, 2024, DOI: 10.1111/mice.13236

  19. Fei YF, Liao WJ, Zhao PJ, Lu XZ*, Guan H, Hybrid surrogate model combining physics and data for seismic drift estimation of shear-wall structures, Earthquake Engineering & Structural Dynamics, 2024, DOI: 10.1002/eqe.4151

  20. Han J, Lu XZ, Gu Y, Cai Q, Xue HJ, Liao WJ, Optimized data representation and understanding method for the intelligent design of shear wall structures, Engineering Structures, 2024, 315: 118500. DOI: 10.1016/j.engstruct.2024.118500

  21. Qin SZ, Guan H, Liao WJ, Gu Y, Zheng Z, Xue HJ, Lu XZ*, Intelligent design and optimization system for shear wall structures based on large language models and generative artificial intelligence, Journal of Building Engineering, 2024, 95: 109996. DOI: 10.1016/j.jobe.2024.109996

  22. Wang ZH, Yue Y, Chen Y, Liao WJ, Li CS, Hu KG, Tan Z, Lu XZ. Expert experience-embedded evaluation and decision-making method for intelligent design of shear wall structures.  Journal of Computing in Civil Engineering-ASCE, 2025, 39(1). DOI: 10.1061/JCCEE5.CPENG-6076



相关资料


学术报告视频

  1. 教学视频:AIstructure结构智能设计软件使用方法

  2. 《从基于模拟的结构设计到基于人工智能的结构设计》学术报告视频

  3. 《建筑结构AI生成式设计的应用与开发》在线交流视频

  4. 混凝土结构的智能设计和对专业教学的思考》学术报告视频


论文和专利

  1. 工程师只要动动嘴就行了,大模型要考虑的就多了 | 新论文:基于大语言模型和生成式AI的剪力墙结构智能设计和优化系统

  2. 揭秘“硅基视觉大法”|新论文:剪力墙结构智能设计的数据表征与理解的优化方法

  3. AI捏个糖葫芦串,动力计算准又快 | 新论文:结合数据与物理模型的建筑结构地震响应计算方法

  4. Diffusion Model智能设计原理揭秘 | 论文和发明专利:基于扩散模型的剪力墙结构智能设计

  5. 新论文:AIstructure-Copilot的技术实现细节

  6. 新论文:剪力墙结构的GNN梁布置智能设计

  7. 新综述论文:建筑结构的生成式智能设计方法研究进展

  8. 左右互搏大法 | 新论文及发明专利:基于结构优化和半监督学习方法提升AI设计效果

  9. 揭秘:图神经网络如何精细考虑抗震设计条件影响?| 新论文:设计条件嵌入GNN的剪力墙布置智能设计方法

  10. 训练数据不足怎么办?AI:我自学!| 新论文及发明专利:力学+规则耦合指导AI的隔震方案设计

  11. 视频:建筑结构生成式智能设计在实际投标项目中的应用

  12. 除了剪力墙结构,AI能不能设计框架结构?| 论文和发明专利:基于图神经网络的框架梁智能化布置

  13. 老师划重点啦,AI工程师学会了么?| 新论文:注意力增强的剪力墙结构人工智能设计方法

  14. 新论文和发明专利 | 规则增强的框架-核心筒结构人工智能设计方法

  15. 新论文 | 剪力墙结构智能化生成式设计方法:从数据驱动到物理增强

  16. 简便高效的建筑结构AI设计系统 | 新论文:集成式智能生成设计系统及其在剪力墙结构上的应用

  17. 利用设计文本指导AI建筑结构设计 | 新论文及发明专利:融合文本和图像数据的建筑结构AI设计方法

  18. 新论文:面向自动合规审查的知识增强语义对齐和自动规则解译方法

  19. 新论文:融合自然语言处理与上下文无关文法的审图规则自动解译方法

  20. 新论文及发明专利 | 基于深度学习的楼盖结构智能化设计方法

  21. 新论文:面向建筑领域自然语言处理的领域语料库及预训练模型

  22. 用“图”和“图”来生成“图”?中文快不够用了 | 发明专利:多模态输入深度神经网络、框架结构梁柱设计方法及装置

  23. AI想做结构设计?它得先学结构力学!| 新论文及发明专利:物理增强的剪力墙结构智能化设计方法

  24. AI+PKPM | 给个建筑户型图,结构设计全自动

  25. 糟糕!结构高度从50m改为100m了。AI:5秒完成新结构方案 | 发明专利:融合文本和图像数据的建筑结构AI设计方法

  26. 揭秘人工智能设计剪力墙结构的科学原理 | 新论文:基于生成对抗网络的剪力墙结构设计方法

  27. 用人工智能进行结构方案设计| 发明专利:基于对抗生成网络的剪力墙结构布置方法

  28. 5分钟!从设计结构方案到完成计算书 | 人工智能设计剪力墙结构案例演示

  29. 新发明专利:一种将规范文本自动转为可计算逻辑规则的方法及系统

---End--



陆新征课题组
清华大学土木工程系陆新征教授课题组。主要开展土木工程AI、抗震防灾等方面的研究。近期研究成果网站ai-structure.com
 最新文章