研究背景
本文揭示了研究人员如何根据不同反应模式的特点,通过精确设计催化剂结构以控制活性氧物种类型与含量,结合反应参数的优化以减少产物过度氧化,显著提升了含氧化合物的选择性。深入探讨了甲烷羟基化过程中实现完全选择性的机制,为进一步优化催化剂设计和反应条件提供了重要启示。本文提出,实现甲烷完全选择性羟基化的关键在于催化剂设计、反应体系的合理选择以及先进表征技术与人工智能的协同应用,从而为温和条件下甲烷的高选择性转化提供更多可行的解决方案。
综述目录
1. Introduction
2. Thermal-catalytic methane hydroxylation
2.1. Cu- and Fe-based catalysts
2.2. AuPd based catalysts
2.3. Metal-oxo based catalysts
3. Photo-catalytic methane hydroxylation
3.1. Metal oxide semiconductor catalysts
3.2. Hybrid semiconductor catalysts
4. Electro-catalytic methane hydroxylation
5. Conclusion and perspective
5.1. Design of efficient catalysts
5.2. Construction of optimal reaction systems
5.3. Advanced characterization and artificial intelligence (AI) assistance
图文导读
Fig. 1. Schematic illustration of low-temperature methane hydroxylation with nearly 100% selectivity in thermal-, photo- and electro-activation
Table 1. Representative works on low temperature methane hydroxylation with nearly total selectivity
Fig. 2. (a) Yields of products during the transformation of CH4 catalyzed by 0.01%, 0.10%, and 2% (mass) Pd/ZSM-5 at 50 °C. Catalytic performance of (b) 0.01% Pd/ZSM-5 at 50, 70, and 95 °C, and (c) 0.01 % Pd/ZSM-5 loaded with 2% (mass) CuO at 50, 70, and 95 °C. (d) Proposed scheme of reaction pathway for direct methane oxidation over Cu-BTC-P-235 using H2O2. (e) Structure of the Fe1/Cu1–C3Nx. (f) Catalytic performance of DSOM on Fe1–C3Nx, Fe1/Cu1–C3Nx, Cu1–C3Nx, and C3Nx.
Fig. 3. (a-c) Models and TEM images of the AuPd@ZSM-5-R catalysts. (d) Reaction performance for the oxidation of methane with H2 and O2 over various catalysts. (e) Structural model of four PdxAuy nanosheet. (f) The relationship of the coverage of Au atoms dotted Pd surface to the energy barrier of H2O2 decomposition.
Fig. 4. (a) Room-temperature CH4 conversion by O2 over the MoS2 and MMO catalysts. (b) The catalytic performance of ER-MoS2 catalyst at different CH4 partial pressures. (c) The reversible reduction/oxidation of Pd/CsPMA at room temperature. (d) Methanol productivity for different POM-based catalysts.
Fig. 5. (a) The schematic description of three-dimensional structure of UiO-66-X (-X= -NH2, -H, and -NO2) based MOFs. (b) The relationship of the Bader charge of adsorbed •OH, the energy barrier for CH4 activation and the specific activity for the DSOM reaction with the electronic property of Zr-oxo nodes (the Zr-O bond position according to Raman spectra) over the UiO-66-X catalysts. (c) The total energy and the initial and the final snapshots of Ab initio molecular dynamics (AIMD) simulation on the structure evolution of Zr-oxo nodes with high •OH concentration at 25 °C. (d) The linear relationship between the p-band centers of reactive oxygenic sites on (•OH)* /UiO-66-H and the barrier energies of RDSs (ERDS) for the DSOM reaction, as well as the adsorption energies (Eads) of CH4. (e) Structure of the Ru1/UiO-66 catalyst in aqueous solution. (f) Activation of CH4 on Ru1=O* and Zroxo−•OH* sites under the presence of •OOH species. (g) Relative intensity of •OH and •OOH (•O2−) over Ru1/UiO-66 and Ru1/AC, respectively.
Fig. 6. (a) Mechanism illustration for photo-catalytic CH4 conversion based on Aux/ZnO. (b) Proposed reaction process of photo-catalytic CH4 oxidation on Au/TiO2 and Au-CoOx/TiO2 using O2 as the oxidant. (c) Proposed reaction mechanism for HCHO generation over c-WO3. (d) HRTEM image of the ZnO/Fe2O3 porous nanosheets. (e) Proposed mechanism of photo-catalytic conversion of CH4 to HCHO or CH3OH on Au1/In2O3 or AuNPs/In2O3, respectively.
Fig. 7. (a) Schematic representation for the possible reaction mechanism of selective CH4 partial photooxidation to CH3OOH over 0.75FeCA800-4 under atmospheric pressure and mild temperature. (b) Design and synthesis of the PMOF-RuFe(OH) catalyst and the flow reactor for photo-oxidation of CH4 to CH3OH. (c) Isotope labeling, in situ DRIFTS spectra of BN under light irradiation with the introduction of CH4, O2, and H2O mixtures. (d) Schematic illustration of oxygen activation on BP nanosheets and reaction path for partial oxidation of methane over Au1/BP nanosheets under light irradiation.
Fig. 8. (a) The reaction process of electrochemical oxidation of methane gas. (b) Catalytic properties of the Sn0.9In0.1P2O7 + Pd-Au-Cu/C mixed catalyst. (c) Possible reaction pathways for methane oxidation and OER in an aqueous electrolyte where M represents TMO.
论文信息
Heterogeneous catalysis of methane hydroxylation with nearly total selectivity under mild conditions
Geqian Fang†, Wenjun Yu†, Xiaodong Wang and Jian Lin*(林坚,中国科学院大连化学物理研究所)
Chem. Commun., 2024, 60, 11034-11051
https://doi.org/10.1039/D4CC02802C
作者简介
本文第一作者,博士,2023 年在中国科学院大连化学物理研究所获得博士学位,同年获得大连化学物理研究所国际英才和法国国家科研中心 PulseCoMeth 项目资助并加入 UCCS-CNRS 实验室担任博士后研究员。主要从事纳米及单原子催化剂在能源与环境小分子(CH4、CO2、ETOH等)的热/光转化方面的应用。近年来在 J. Am. Chem. Soc., Angew. Chem. Int. Ed., ACS Catal., J. Mater. Chem. A, ChemsusChem, ACS Appl. Mater. Interfaces, Chem. Commun. 等化学化工类期刊上发表论文近 20 篇,受权及受理多篇国家发明专利。获得 2024 年度中国科学院优秀博士学位论文。
本文第一作者,博士生,就读于中国科学院大连化学物理研究所。研究方向为甲烷选择性催化转化制含氧化学品。
本文共同作者,博士,中国科学院大连化学物理研究所研究员,中国科学院催化材料重点实验室主任,“万人计划”科技创新领军人才。主要从事耐高温高分散金属催化剂的研究以及化学链催化转化过程研究。近年来,在 Nat. Catal., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nature Commun., Energy. Environ. Sci, ACS Catal., Appl. Catal. B-Environ., AIChE J. 等期刊上发表论文 300 余篇,研发的系列新型催化剂应用于新一代北斗导航卫星、探月工程嫦娥四号/五号任务等。
相关期刊
rsc.li/chemcomm
Chem. Commun.
2-年影响因子* | 4.3分 |
5-年影响因子* | 4.4分 |
JCR 分区* | Q2 化学-多学科 |
CiteScore 分† | 8.6分 |
中位一审周期‡ | 23 天 |
ChemComm (Chemical Communications) 报道来自世界各地的化学研究新进展,涵盖化学中的各个领域,包括但不限于分析化学、生物材料化学、生物有机/药物化学、催化、化学生物学、配位化学、晶体工程、能源、可持续化学、绿色化学、无机化学、无机材料、主族化学、纳米科学、有机化学、有机材料、金属有机、物理化学、超分子化学、合成方法学、理论和计算化学等。作为英国皇家化学会论文总被引次数最高的老牌期刊,ChemComm 拥有悠久的历史,对论文质量、期刊口碑以及审稿的公平性有着长期的坚持。作为一本发表通讯为主的期刊,ChemComm 从投稿到发表的速度一直是业内领先。
Douglas Stephan
🇨🇦 多伦多大学
|
|
* 2023 Journal Citation Reports (Clarivate, 2024)
† CiteScore 2023 by Elsevier
‡ 中位数,仅统计进入同行评审阶段的稿件
📧 RSCChina@rsc.org