前沿:Chip发表武汉大学刘胜院士团队最新成果 | 蜂窝状晶格声子晶体提升压电微腔恒温控制MEMS谐振器Q值

文摘   2024-12-09 17:45   江苏  

文章来源:FUTURE | 远见

近日,武汉大学刘胜院士团队吴国强教授以「Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals」¹为题在Chip上发表研究论文,利用二维蜂窝状晶格声子晶体微加热腔与压电MEMS谐振器集成,以减少谐振器的锚点损耗提Q,从而实现压电微腔恒温MEMS振荡器稳定性的提高。第一作者为肖宇豪,通讯作者为吴国强。Chip是全球唯一聚焦芯片类研究的综合性国际期刊,是入选了国家高起点新刊计划的「三类高质量论文」期刊之一。


微机电系统(Microelectromechanical Systems,MEMS)谐振器因其具有体积小,可靠性高,与半导体制造工艺的兼容性等独特的优势,可以取代石英谐振器作为频率参考。然而,传统硅基MEMS谐振器的较大的频率温度系数(Temperature Coefficients of Frequency,TCF)使其在随温度波动的环境中频率稳定性不足。这种情况限制了MEMS技术在严苛环境中的使用,尤其是在高端通信和精密测量等领域。微加热腔恒温控制技术则是一种解决方案,通过将谐振器置于加热环境,保持其在TCF为零的条件下运作,从而消除了温度造成的频率偏移,能够实现ppb级别的频率稳定性2,3

基于硅上压电薄膜(Thin-film Piezoelectric-on-silicon,TPoS)谐振器结合了压电材料的高机电转换因子和单晶硅(Singlecrystal Silicon, SCS)的低本征损耗的优点。TPoS谐振器的最新进展集中于采用微加热腔恒温控制设计,以实现高度稳定和精确的频率参考。然而,Q值下降的问题是当前基于TPoS平台的微加热腔恒温控制谐振器面临的重大挑战4,5

图1 | 声子晶体微加热腔恒温控制压电谐振器设计。a, 蜂窝状晶格PnC的晶胞。b, 蜂窝状晶格PnC布里渊区的不可约部分。c, 蜂窝状晶格PnC的能带结构。d, PnC和参考结构的延迟线模型。e, 延迟线的传输曲线。f, PnC微腔恒温控制压电谐振器的三维示意图。g, 仿真的温度分布。h, PnC微加热腔谐振器的自加热特性。

TPoS谐振器最重要的能量损耗之一是锚点损耗,其耗散机制是谐振器的弹性能量通过支撑锚点泄漏到衬底中。本文提出了一种基于二维蜂窝状晶格声子晶体(Phononic Crystal,PnC)的微加热腔恒温控制TPoS谐振器的新设计。所提出的PnC微加热腔旨在减少锚点损耗,从而提高TPoS谐振器的Q值。PnC结构的集成使谐振器即使在转折点也能保持高Q值,从而实现卓越的频率稳定性。图1a为二维蜂窝状晶格PnC的晶胞。PnC的不可约布里渊区如图1b所示,可以通过对布里渊区 (Γ-Y-L-K) 所包围的区域进行参数扫描来获得PnC的能带结构。在COMSOL Multiphysics中仿真了蜂窝状晶格PnC结构的色散关系。如图1c所示,仿真的蜂窝晶格完全带隙覆盖了从24.63 MHz到37.21 MHz的较大频率范围。如图1d所示,采用延迟线模型来验证PnC结构的阻带效应。图1e表明,频率在20 MHz至30 MHz范围内的声波通过PnC延迟线时出现明显的衰减。图1f展示了所提出的PnC微腔恒温控制压电谐振器的三维示意图。设计的平面内PnC微加热腔与谐振体集成在一起,谐振器由四个折叠梁和一个基于周期性PnC结构的隔热框架组成。周期性PnC结构从二维蜂窝晶格板中切割出来,以减小微加热腔的尺寸。PnC结构被专门设计成微加热腔,不仅为MEMS谐振器提供机械和热隔离,还可以作为加热元件。图1g显示了环境温度为-40 ℃时,施加2 V电压差时所仿真的微烤箱控制压电谐振器的温度分布。结果显示,基于PnC的谐振器主体和隔热框架上的温度分布极其均匀。图1h描述了当谐振器在-40 ℃下工作时,谐振器的频率偏移与施加到微加热腔的加热电压之间的相关性。大约2 V的加热电压差使谐振器在零TCF点实现恒温。图2展示了不带PnC微加热腔(Type-A)和带PnC微加热腔(Type-B)的压电谐振器测试的QlILQuRm。结果表明,在Type-B谐振器中观察到的Q值增强是一致且可重复的。Type-B谐振器的最大Q为42784,相应的f×Q为1.12×1012。与Type-A谐振器相比,Type-B谐振器的最大Q提高了1.4倍。此外,不同器件长度下Type-B谐振器的平均Q显示出超过1.7倍的可重复提高。此外,与Type-A谐振器相比,Type-B谐振器的Rm不同器件长度上一致降低了1.3倍。

图2 | 不同器件长度的谐振器传输响应测量结果及其平均值。a, Qlb, ILc, QudRm

图3a展示微加热腔恒温控制压电谐振器的谐振频率与温度的关系。谐振器的温度拐点高达131 ℃。高温度拐点使谐振器能够在更宽的温度范围内有效运行,满足高端微加热腔恒温控制谐振器的需求。图3b描述了室温下加热功率变化时微加热腔恒温控制谐振器的谐振频率和Q值的关系。由于声子晶体带隙的存在,带有PnC微加热腔的压电谐振器与不带PnC微加热腔压电谐振器相比在高温下仍然表现出更高的Q值。图3c显示,在40 ℃温度下测量60分钟,微加热腔恒温控制压电谐振器频率变化小于±10 ppb。图3d比较了基于Type-A和Type-B谐振器的振荡器的Allan方差。Type-A和Type-B振荡器的最佳频率不稳定性分别为2.91 ppb和0.41 ppb。频率稳定性的提高凸显了带有PnC微加热腔的谐振器在构建高稳定性时钟方面的潜力。

图3 | 真空封装MEMS谐振器的测量结果。a, 测量的频率-温度特性。b, 测量的谐振频率和无负载Q加热功率的关系。c, 测量的微加热腔恒温控制谐振器频率稳定性。 d, 在40 ℃下测量1小时以上的压电MEMS谐振器振荡器的Allan方差比较。

Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals¹


Microelectromechanical systems (MEMS) resonators have demonstrated unique advantages as frequency references to replace quartz resonators, because of their compact size, high reliability, and compatibility with semiconductor manufacturing process. Despite these advantages, temperature coefficients of frequency (TCFs) of silicon-based MEMS resonators are quite large. The TCF of resonator can be achieved by the micro-oven-controlled temperature compensation scheme to achieve zero TCF (turnover point) at a high temperature,and stands out as a particularly effective method for achieving ppb-level frequency stability. Thin-film piezoelectric-on-silicon (TPoS) resonators combine the benefits of high electromechanical transduction factor from piezoelectric materials with low intrinsic losses of single-crystal silicon (SCS), resulting in both low Rm and moderately high Q. Recent advancements in TPoS resonators have focused on incorporating micro-oven-controlled designs to achieve highly stable and precise frequency references. However, the Q degradation problem presents a significant challenge for the current micro-oven-controlled resonators based on the TPoS platform2,3.

For TPoS resonators, one of the most important energy loss factors is anchor loss, and its dissipation mechanism is the elastic energy of the resonator leaked through the supporting tethers into the substrates. In this paper, researchers present a novel design for the micro-oven-controlled TPoS resonators incorporating 2-D honeycomb lattice PnCs. The proposed PnC micro-oven is designed to reduce anchor loss and thereby enhance the Q of TPoS resonators. The integration of the PnC structure allows the resonator to maintain a high Q even at the turnover point, resulting in exceptional frequency stability4,5.

Fig. 1 | Design of the PnC micro-oven controlled piezoelectric resonator. a, A unit cell of the honeycomb lattice PnC. b, The irreducible part of the Brillouin zone for honeycomb lattice PnC. c, Band structures of the honeycomb lattice PnC. d, Delay line models of PnC and reference structures. e, Transmission curves of the delay lines. f, Three-dimensional schematic view of the PnC micro-oven controlled piezoelectric resonator. g, Simulated temperature distributions. h, Self-ovenization characteristic for the resonator with PnC micro-oven.


Fig.1a shows a unit cell of the honeycomb lattice PnC. The irreducible Brillouin zone of the PnC lattice is shown in Fig.1b. Band structure of the PnC can be obtained by parametric sweeping the area surrounded by the Brillouin zone ((Γ-Y-L-K) based on COMSOL Multiphysics. As shown in Fig.1c, the simulated complete PBG of honeycomb lattice covers a large frequency range from 24.63 MHz to 37.21 MHz. As shown in Fig.1d, delay line models are used to verify the stopband effect of the PnC structure. Fig.1f illustrates three-dimensional schematic view of the proposed PnC micro-oven controlled piezoelectric resonator. The designed in-plane PnC micro-oven is integrated with the resonator body, which is composed of four folded beams and an isolation frame based on periodical PnC structure. The periodical PnC structures are cut from the 2-D honeycomb lattice slab to reduce the size of the micro-oven. The PnC structure is purposely designed as a micro-oven, which not only provides mechanical and thermal isolations for MEMS resonator, but also serves as a heating element via Joule heating. Fig.1g displays the simulated temperature distributions of the proposed micro-oven controlled piezoelectric resonator with an applied voltage difference of 2 V at ambient temperature of -40 ℃. The result shows an extremely uniform temperature distribution over the resonator body as well as the thermal isolation frame based on PnC. Fig.1h depicts the correlation between frequency shift of the resonator and heating voltage applied to the micro-oven, when the resonator is operating at -40 ℃. A heating voltage difference of approximately 2 V enables the ovenization of the resonator at zero TCF point. The measured QlILQu and Rm of the fabricated piezoelectric resonators without PnC micro-oven (Type-A) and with PnC micro-oven (Type-B) are shown in Fig. 2. The results indicate that the observed Q-enhancement in Type-B resonators is consistent and reproducible. The Type-B resonators demonstrate a maximum Qu of 42784, with a corresponding f×Q is 1.12×1012. Compared to the Type-A resonator, the maximum Qu of Type-B resonator shows an improvement of 1.4 times. Moreover, the average Qu of Type-B resonators under different device lengths demonstrates a repeatable increase over 1.7 times. Additionally, the Rm of Type-B resonators exhibits a consistent reduction of 1.3 times across different device lengths when compared to Type-A resonators.

Fig. 2 | Transmission response measurement results of the resonators and their average values with different device lengths. a, Qlb, ILc, Qu. d, Rm.

Fig. 3a displays the resonant frequency of the micro-oven-controlled piezoelectric resonator versus temperature. The resonator presents a high turnover point of 131 ℃. The high turnover point enables the resonator to operate effectively over a broader temperature range, meeting the demand for high-end micro-oven-controlled resonator. Fig. 3b depicts the resonant frequency and unloaded Q of the micro-oven-controlled piezoelectric resonator under varying heating power at room temperature. The piezoelectric resonator with micro-oven still exhibits superior high Qu compared with the bare piezoelectric resonators due to the existence of the PBG. The frequency stability of the micro-oven-controlled piezoelectric resonator was measured for 60 min at a stable temperature of 40 ℃. Fig. 3c shows that the frequency variation is less than ±10 ppb over the measurement period. Fig. 3d compares the extracted Allan deviations of oscillators based on Type-A and Type-B resonators. The best frequency instabilities of Type-A and Type-B oscillators are 2.91 ppb and 0.41 ppb, respectively. The improvement in short-term stability highlights the potential of resonators with PnC micro-oven to create high-stable clocks.

Fig. 3 | Measurement results of the vacuum-packaged MEMS resonators. a, Measured frequency-temperature characteristicb, Measured resonant frequency and unloaded Q versus heating power. c, Measured frequency stability with micro-oven control. d, Comparison of Allan deviations of fabricated piezoelectric MEMS resonator-based oscillators measured over 1 hour at 40 ℃.

参考文献


1. Xiao, Y., Zhu, K., Han, J., Liu, S. & Wu, G. Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals. Chip 3, 100108 (2024).

2. Wu, G.-Q., Xu, J.-H., Ng, E. J. & Chen. W. MEMS resonators for frequency reference and timing applications. J. Microelectromech. Syst. 29, 1137-1166 (2020).

3. Ortiz, L. C. et al. Low-power dual mode MEMS resonators with ppb stability over temperature. J. Microelectromech. Syst. 29, 190-201 (2020).

4. Pillai, G. & Li, S.-S. Piezoelectric MEMS resonators: a review. IEEE Sens. J. 21, 12589-12605 (2021).

5. Frangi, A., Cremonesi, M., Jaakkola, A. & Pensala, T. Analysis of anchor and interface losses in piezoelectric MEMS resonators. Sens. Actuators A Phys. 190, 127-135 (2013). 


论文链接:

https://www.sciencedirect.com/science/article/pii/S2709472324000261


作者简介



肖宇豪,2020年获得武汉大学机械工程学士学位,目前在攻读武汉大学物理电子学博士学位。他的主要研究方向包括MEMS谐振器的设计、制造以及应用。


Yuhao Xiao received the B.E. degree in mechanical engineering from Wuhan University, Wuhan, China, in 2020. He is currently pursuing the Ph.D. degree in physical electronics at Wuhan University, Wuhan, China. His research interests include the design, fabrication and applications of MEMS resonators.



朱科文,2018年获得湖北工业大学包装工程学士学位,2020年获得武汉大学机械工程硕士学位,目前在攻读武汉大学微电子博士学位。他的主要研究方向包括MEMS滤波器的设计、仿真以及加工。


Kewen Zhu received the B.E. degree in packaging engineering from Hubei University of Technology, Wuhan, China, in 2018. He received the M.S. degree in mechanical engineering from Wuhan University, Wuhan, in 2020, where he is currently pursuing the Ph.D. degree in mechanical and electronic engineering. His research interests include the design, simulation, and fabrication of MEMS filters.



韩金钊,2018年获得河南工业大学无机非金属材料工程学士学位,2020年获得武汉大学材料工程硕士学位,2023年获得武汉大学微电子与固体电子学博士学位。他的研究兴趣包括微机械谐振器、滤波器设计。


Jinzhao Han received the B.S. degree in inorganic non-metallic materials engineering from Henan University of Technology, Zhengzhou, China, in 2018. He received the M.S. degree in materials engineering from Wuhan University, Wuhan, in 2020. He received the Ph.D. degree in microelectronics and solid-state electronics from Wuhan University, Wuhan, in 2023. His research interests include the design, simulation, and fabrication of micromechanical resonators and filters.



刘胜,1979年至1986年就读于南京航空航天大学,先后获得学士、硕士学位。1992年毕业于美国斯坦福大学,获工学博士学位。1992年-1998年,在美国佛罗里达(Florida)理工学院、韦恩(Wayne)州立大学任助理教授。1998年获美国韦恩(Wayne) 州立大学机械工程系和制造研究所终身教职,担任电子封装实验室主任。2001年至2013年回国担任华中科技大学微系统研究中心主任、武汉光电国家实验室(筹)微光机电系统研究部负责人。2014年至今,任武汉大学动力与机械学院教授、院长,工业科学研究院执行院长、微电子学院副院长。2023年11月当选为中国科学院院士。


Sheng Liu received the B.S. and M.S. degrees from Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 1983 and 1986, respectively, and the Ph.D. degree from Stanford University, Stanford, CA, USA, in 1992.


His research interests include microsystems (MS)/nanoelectromechanical systems, LED design and manufacturing, system packaging and integration, reliability, smart materials and composites, and mechanics of materials and structures.



吴国强,2008年获得西安电子科技大学电子科学与技术专业学士学位,2013年获中国科学院上海微系统与信息技术研究所(SIMIT)微电子与固体电子学专业博士学位。2014年至2018年在新加坡科学技术研究局(A*STAR)微电子研究院担任研究科学家。现为武汉大学工业科学研究院教授、博士生导师,获批国家自然科学基金优秀青年科学基金项目、湖北省自然科学基金杰出青年项目,入选湖北省高级人才项目,受邀担任IEEE MEMS(2023、2024)执行技术委员会委员。主要研究方向为微纳机电系统(N/MEMS)的设计与集成。目前共发表学术论文80余篇,申请国家发明专利50余项,其中授权发明专利37项,部分技术成功实现应用和产业化。


Guoqiang Wu received the B.Eng. degree in electrical science and technology from Xidian University, Xi’an, China, in 2008, and the Ph.D. degree in microelectronics and solid-state electronics from the Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai, China, in 2013. From 2014 to 2018, he was a Research Scientist with the Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore. He is currently a Professor with the Institute of Technological Sciences, Wuhan University, Wuhan, China. His research interests include micro/nanoelectromechanical system (N/MEMS) design and integration.


Dr. Wu is the recipient of the Best Dissertation Award of Shanghai in 2014. Together with his students, he was the finalist in best student paper competitions at IEEE MEMS (2021). He is a Senior Member of IEEE and has served as a member of the technical program committee of IEEE MEMS Conference (2023-2024). He has published over 80 research articles and filed over 50 patent applications with 37 of them being granted in US and China, and several of his inventions being successfully commercialized.

免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间后台联系,我们将协调进行处理,所有来稿文责自负,两江仅作分享平台。转载请注明出处,如原创内容转载需授权,请联系下方微信号。

两江科技评论
聚焦“光声力热”超构材料、凝聚态物理、生物医学、智能制造等领域,打造科研人便捷的交流平台,发布优质新鲜的科研资讯。
 最新文章