GHSL: 1975-2030全球建筑体积的分布情况,以每 100 米网格单元立方米为单位

文摘   2025-01-24 23:00   北京  

GHSL: 1975-2030全球建筑体积的分布情况,以每 100 米网格单元立方米为单位

GHSL: Global building volume 1975-2030 (P2023A)

简介

该栅格数据集描述了全球建筑体积的分布情况,以每 100 米网格单元立方米为单位。该数据集测量总建筑体积和分配给主要非住宅(NRES)用途网格单元的建筑体积。有关全球人类居住图层数据产品的更多信息,请参阅《全球人类居住图层数据包 2023》报告。全球人类居住图层(GHSL)项目由欧盟委员会、联合研究中心以及区域和城市政策总局支持。

摘要

Dataset Availability

1975-01-01T00:00:00 - 2030-12-31T00:00:00

Dataset Provider

EC JRC

Collection Snippet

ee.ImageCollection("JRC/GHSL/P2023A/GHS_BUILT_V")


Resolution

100 meters

Bands Table
NameDescriptionUnits
built_volume_total

Total building volume per grid cell

m^3
built_volume_nres

Non-residential building volume per grid cell

m^3

代码
var image_1975 = ee.Image('JRC/GHSL/P2023A/GHS_BUILT_V/1975');
var image_2020 = ee.Image('JRC/GHSL/P2023A/GHS_BUILT_V/2020');
var volume_total_1975 = image_1975.select('built_volume_total');
var volume_total_2020 = image_2020.select('built_volume_total');


var visParams = {
min: 0,
max: 80000,
palette: ['000004', '51127c', 'b73779', 'fc8961', 'fcfdbf'],
};

Map.setCenter(77.156, 28.6532, 10);
Map.addLayer(volume_total_1975, visParams, 'Total building volume [m3], 1975');
Map.addLayer(volume_total_2020, visParams, 'Total building volume [m3], 2020');

引用

Dataset : Pesaresi, Martino; Politis, Panagiotis (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC). PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA

Methodology : Pesaresi, Martino, Marcello Schiavina, Panagiotis Politis, Sergio Freire, Katarzyna Krasnodebska, Johannes H. Uhl, Alessandra Carioli, et al. (2024). Advances on the Global Human Settlement Layer by Joint Assessment of Earth Observation and Population Survey Data. International Journal of Digital Earth 17(1). doi:10.1080/17538947.2024.2390454.

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg 

干旱监测平台

慧天干旱监测与预警-首页https://www.htdrought.com/https://www.htdrought.com/


双碳NetZero
专注于碳中和、碳达峰的知识、资讯和数据等相关内容。
 最新文章