点击蓝字 关注我们
研究背景
Xiyu Chen, Lingwei Kong, Jaafar Abdul-Aziz Mehrez, Chao Fan, Wenjing Quan, Yongwei Zhang, Min Zeng*, Jianhua Yang, Nantao Hu, Yanjie Su, Hao Wei & Zhi Yang*
https://doi.org/10.1007/s40820-023-01107-4
本文亮点
2. 水分子诱导COF薄膜层间二亚胺异构变为亚胺基/顺式酮胺,引起亚胺键拉伸振动急剧变化,实现对湿度传感的快响应、宽范围和高灵敏度等优点。
内容简介
人体代谢湿度检测在健康监测和非侵入性诊断中具有重要研究价值,然而要实现对呼吸湿度传感的高灵敏度实时定量监测,还存在巨大挑战。共价有机框架(COF)薄膜具备共轭拓扑有序、结构可设计、孔隙率高等特点,作为新型气体敏感材料具有巨大潜力。厘清COF薄膜气固界面气体吸/脱附过程诱导的拓扑结构变化、电荷传输过程与传感性能的构效关系是提高其传感性能的关键。上海交通大学杨志教授课题组采用水/油界面原位生长法合成了基于亚胺键连接的共价有机框架COF薄膜,并构筑电阻型湿度传感器。通过对COF薄膜结构单体和官能团的调节,实现了高响应、宽检测范围、快速响应和恢复的传感性能。当相对湿度从13%增加至98%的条件下,基于COFTAPB-DHTA薄膜传感器的湿度响应值提升了390倍,揭示了大π共轭拓扑结构COF薄膜对湿度传感信号放大机制。原位Raman光谱证实了拓扑结构亚胺键处存在双活性吸附位点(−C=N−)和(C−N),从分子水平揭示了氢键诱导互变异构的湿度传感机制。同时,我们将COF薄膜应用于检测口鼻呼吸以及织物透气性等场景的湿度传感,验证了其出色的湿度传感性能。该工作将为高性能COF薄膜湿度传感器提供重要的实验依据和理论基础。
图文导读
I 水/油界面原位生长COF薄膜
图1. (a) COF薄膜(紧密贴附)和(b) COF粉末(随机分散)基湿度传感器的制备流程图。
II IDEs-COF薄膜基湿度传感器的性能
良好的湿度传感性能是满足呼吸监测应用的基础,该工作通过调控COF拓扑结构的配位单体和功能基团,实现高灵敏度、宽范围、快速响应和高线性关系。结果表明COFX-DHTA系列薄膜中COFTAPB-DHTA具有最低检测极限,当相对湿度(RH)在检测范围13.1%至最高98.2%时,IDEs-COFTAPB-DHTA薄膜传感器的湿度响应值提升了390倍(图2a)。在低于60% RH环境湿度范围内,COFX-DHTA薄膜传感器的响应值和RH对数均显示出良好的线性关系(图2d–f插图)。为评估IDEs-COF薄膜湿度传感器的稳定性,将其暴露在高湿度76.2% RH中60 s后,12个循环下的电流动态特性曲线几乎没有变化(图2g–i),最快平均仅需3.4 s即可完全恢复(图2i)。
图2. (a) IDEs-COFTAPB-DHTA、(b) IDEs-COFTAPT-DHTA和(c) IDEs-COFTAPPy-DHTA薄膜湿度传感器在不同RH下的动态响应特性曲线(检测范围:从干燥空气0.0%到不同RH);(d) COFTAPB-DHTA、(e) COFTAPT-DHTA和(f) COFTAPPy-DHTA薄膜的响应值与RH的曲线(插图显示了响应值与RH对数的线性拟合曲线);(g) COFTAPB-DHTA、(h) COFTAPT-DHTA和(i) COFTAPPy-DHTA薄膜12个周期的响应/恢复曲线(检测范围:41.7–76.2% RH)。
III COF薄膜基湿度传感器的应用
基于COF薄膜湿度传感器快速响应/恢复特性,我们将IDEs-COFX-DHTA用于检测人体代谢相关湿度。如图3a–f所示,IDEs-COFX-DHTA监测志愿者的口腔和鼻腔两种呼吸模式。结果显示IDEs-COFTAPB-DHTA薄膜传感器监测志愿者2 min鼻腔呼吸的响应和恢复时间分别为0.4和1 s(图3a);在进行25个周期的口腔呼吸中,电流曲线信号明显且幅度稳定。在布料透气性检测中,纯棉纤维的透气效果明显优于聚酯纤维(图3g)。此外,我们直接将Macro-COFTAPB-DHTA薄膜(d = 20 mm)作为传感器进行湿度检测(图3h和i),其宽的检测范围和快速的响应/恢复曲线进一步证明这种可规模化制备的宏观COFX-DHTA薄膜具备直接加工为湿度传感器的潜力。
图3. (a) IDEs-COFTAPB-DHTA、(b) IDEs-COFTAPT-DHTA和(c) IDEs-COFTAPPy-DHTA薄膜基湿度传感器的鼻腔呼吸监测曲线(环境RH为52.3%);(d) IDEs-COFTAPB-DHTA、(e) IDEs-COFTAPT-DHTA和(f) IDEs-COFTAPPy-DHTA薄膜基湿度传感器的口腔呼吸监测曲线(环境RH为31.7%);(g) IDEs-COFTAPB-DHTA薄膜基湿度传感器的实时电流曲线用以模拟服装面料的空气渗透性;(h)直接使用Macro-COFTAPB-DHTA薄膜型湿度传感器在载玻片上进行实时动态湿度监测,检测范围分别为干燥空气到环境RH(0.0–45.9%)和(i)环境到最大RH(45.9–94.7%)。
IV COF薄膜检测湿度的传感机理
最后,基于密度泛函理论(DFT)理论计算和原位拉曼光谱,我们系统分析了COF薄膜检测湿度的传感机理。平均局部电离能(ALIE)分布能准确分析反应位点和结合模式(图4)。与其他COF相比,COFTAPB-DHTA的ALIE具有最低值为0.309 a.u.,这更有利于水分子进攻COFTAPB-DHTA中的亚胺键并引发互变异构化。此外,DHTA的羟基提供了额外的电子,可诱发层间增强的范德华相互作用,增强COFTAPB-DHTA薄膜的敏感性。水分子的进入导致亚胺基的异构化,并通过沿亚胺连接的共轭骨架诱发HOMO偏移,这加强了亚胺键的供电子能力并降低了能隙Eg。相应地,Water-COFX-DHTA获得更窄的Eg使得电子传导率增强,这和传感器实时采集的电流值与RH正相关相吻合。
图4. (a) COFTAPB-PDA膜表面的ALIE分布;(b) COFTAPB-PDA膜的HOMO和(c) LUMO;(d) Water-COFTAPB-PDA的W-HOMO和(e) W-LUMO是由COFTAPB-PDA薄膜吸收水分子形成;(f) COFTAPB-DHTA薄膜表面的ALIE分布;(g) COFTAPB-DHTA薄膜的HOMO和(h) LUMO;(i) Water-COFTAPB-DHTA的W-HOMO和(j) W-LUMO由吸收COFTAPB-DHTA薄膜的一个水分子形成。
图5.(a) COFTAPB-DHTA的拉曼峰位置的分配;(b) COFTAPB-DHTA、(c) COFTAPT-DHTA和(d) COFTAPPy-DHTA薄膜的原位拉曼光谱;(e) COFTAPB-DHTA、(f) COFTAPT-DHTA和(g) COFTAPPy-DHTA粉末的原位拉曼光谱。
V 结论与展望
本文通过调控共轭骨架结构单元和活性官能团,合成出宏观尺寸的COF薄膜,实现其共轭拓扑结构的可控设计。率先从分子水平上阐明了COF薄膜亚胺键双活性位点的湿度传感机理,揭示其水分子氢键诱导可逆质子化互变异构的内在增感机制。随着相对湿度增加,水分子诱导的层间二亚胺异构变为亚胺基/顺式酮胺,引起亚胺键拉伸振动急剧变化,实现了快速可逆的湿度传感响应。实验结果表明大π共轭拓扑结构能实现对微小湿度传感信号放大效应,且COF薄膜中的长程有序中孔结构有效疏导了电荷传递过程,从而实现宽量程、高灵敏的湿度传感性能。通过系统研究共轭骨架结构与气体传感性能的构效关系,构建COF气体传感理论模型,揭示了COF薄膜阻敏增感策略和层间电荷转移传感机制。本工作不仅为发展高灵敏COF薄膜气体传感器提供了新的思路,也为拓展新型传感机理奠定了研究基础,同时对实现高灵敏湿度传感器在物联网中的大规模应用具有重要的指导意义。
作者简介
本文通讯作者
▍主要研究成果
▍Email:minzeng@sjtu.edu.cn
本文通讯作者
▍主要研究成果
▍Email:zhiyang@sjtu.edu.cn
关于我们
Tel: 021-34207624
扫描上方二维码关注我们
点击阅读原文/扫描上方小程序码在免费获取英文原文