Stata基础:受限被解释变量
学术
2024-11-17 11:30
四川
在某些情况下,被解释变量的取值范围可能是受限制的,被称为“受限被解释变量”。研究这种类型的变量的模型被称为受限被解释变量模型,分为断尾回归、截取回归与样本选择模型。(1)普通断尾随机变量——断尾回归:对于分析的样本解释变量有上限或者下限的要求(2)零断尾计数数据——零断尾泊松回归和负二项回归:正整数(3)偶然断尾(自选择问题)——样本选择模型:因为某些原因,导致被解释变量的取值有所不同(4)归并数据——归并Tobit模型和跨栏模型:一个离散点和一个连续分布II(#)表示左边断尾,ul(#)表示右边断尾,两个都用则表示双边断尾。样本中仅包括正整数,而不包括为0的样本(本身存在一定的样本选择问题),例如,在公交车上发放问卷调查每周乘坐公交车的次数。第二个和第三个是负二项回归,其中第二个是默认的NB2模型,第三个是NB1模型被解释变量y的断尾与z变量相关,这被称为偶然断尾,即存在样本自选择问题。类似于零断尾现象的存在,样本本身被选择就是由于某些其他因素的存在。此时需要采取heckman两步法,第一步需要测算样本被选择的概率,第二步再对规律进行回归。 第一个为默认使用的MLE法进行测算的,第二个是Heckit的两步法,第三个是选择方程的被解释变量不再是y而是w。在最后一行的p值表示拒绝原假设,即应该选择样本选择模型。当满足某个条件时,被解释变量的取值全部归为了一个数,即被解释变量的分布变成了一个离散点和一个连续分布。 但是其对被解释变量的分布要求很高,需要服从同方差以及正态分布的特征。(最大似然估计的衍生)用下面的方法对正态性进行检验。(需要在进行tobit回归之后使用)观察CM值,将其与各个百分比的数值进行对比,大于则拒绝原假设,即不认为其为正态分布。若进行CLAD法,发现其与Tobit存在较大差异,则表示确实不应当采用Tobit回归。将决策分为两个阶段,第一个是是否会做这件事,第二个才是做这件事的结果数值大小。即分别进行回归,首先第一阶段,生成一个被解释的虚拟变量,利用全样本进行Probit或者Logit回归。