《征服数据结构》并查集(DSU)

科技   2024-10-10 18:39   上海  

摘要:

1,并查集的介绍

2,并查集的查找

3,并查集的合并



1,并查集的介绍

并查集(Disjoint-set data structure,不交集数据结构)是用于处理一些不交集的合并以及查询问题,它是非常重要的一种数据结构,在信奥赛,蓝桥杯等比赛中用到的非常多,主要用于图论算法中。


在并查集中,刚开始的时候,每个元素都是一个单独的连通分量,还没有发生合并,如下图所示:

Java 代码:

public class UnionFind {

    private int[] parent; // 记录每个元素所在的连通分量。
    private int count;// 连通分量个数。

    // 构造函数。
    public UnionFind(int n) {
        count = n;// 连通分量的个数
        parent = new int[n];
        // 初始化不同值,每个元素都是一个单独的连通分量
        for (int i = 0; i < n; i++)
            parent[i] = i;
    }
}

C++ 代码

class UnionFind {

private :
    vector<int> parent;// 记录每个元素所在的连通分量。
    int count;// 连通分量个数。

    // 构造函数。
public :
    UnionFind(int n) : count(n), parent(n) {
        // 初始化不同值,每个元素都是一个单独的连通分量
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
    }
};

这里说明一下数组parent的含义,假如每个连通分量都有编号,那么 parent[5]=3 就表示元素 5 在编号为 3 的连通分量中。


2,并查集的查找

并查集我们可以把它看作是一个森林,每个连通分量可以把它看作是一棵树,其中树中根节点的值就是连通分量的编号,其它非根节点的值都不等于它所在的连通分量的编号。子节点的parent[i]等于父节点的值,根节点的parent[i]等于它自己

数据结构和算法
王一博,《算法秘籍》作者,1000多页的pdf算法题我也已经整理完成,在公众号“数据结构和算法”中回复关键字“pdf”即可下载。
 最新文章