Datawhale干货
整理:机器之心、Datawhale
一份AI领域研究的经典论文清单
随着生成式 AI 模型掀起新一轮 AI 浪潮,越来越多的行业迎来技术变革。许多行业从业者、基础科学研究者需要快速了解 AI 领域发展现状、掌握必要的基础知识。
而在转行 AI 的过程中,研究「论文」一定是最不可缺少的一环。
传奇程序员、3D 游戏之父,id Software 联合创始人 John Carmack 在 2020 年想转行 AGI 时,前 OpenAI 联合创始人兼首席科学家 Ilya Sutskever 给他写了一份 AI 领域研究的论文清单。
这份清单被 50 多万人浏览过,网友称:Ilya 认为掌握了这些内容,你就了解了当前(人工智能领域) 90% 的重要内容。甚至有人表示它是 OpenAI 入职培训内容的一部分。
与此同时,一个名为 Taro Langner 的贡献者对清单做了补充,还指出了一些必须注意的额外内容,包括 Yann LeCun等重要 AI 学者的工作,以及关于 U-Net、YOLO 目标检测、GAN、WaveNet、Word2Vec 等技术的论文。
Datawahle 将完整的论文清单整理如下:
完整论文清单
卷积神经网络:
《ImageNet Classification with Deep Neural Networks》
论文地址:https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
《CS231n Convolutional Neural Networks for Visual Recognition》
论文地址:https://cs231n.github.io/
《Deep Residual Learning for Image Recognition》
论文地址:https://arxiv.org/pdf/1512.03385
《Identity Mappings in Deep Residual Networks》
论文地址:https://arxiv.org/pdf/1603.05027
《Multi-Scale Context Aggregation by Dilated Convolutions》
论文地址:https://arxiv.org/pdf/1511.07122
循环神经网络:
《The Unreasonable Effectiveness of Recurrent Neural Networks》
论文地址:https://karpathy.github.io/2015/05/21/rnn-effectiveness/
《Understanding LSTM Networks》
论文地址:https://colah.github.io/posts/2015-08-Understanding-LSTMs/
《Recurrent Neural Network Regularization》
论文地址:https://arxiv.org/pdf/1409.2329
《Pointer Networks》
论文地址:https://arxiv.org/pdf/1506.03134
《Relational Recurrent Neural Networks》
论文地址:https://arxiv.org/pdf/1806.01822
《Neural Turing Machines》
论文地址:https://arxiv.org/pdf/1410.5401
《Deep Speech 2: End-to-End Speech Recognition in English and Mandarin》
论文地址:https://arxiv.org/pdf/1512.02595
《Order Matters: Sequence to Sequence for Sets》
论文地址:https://arxiv.org/pdf/1511.06391
《Neural Machine Translation by Jointly Learning to Align and Translate》
论文地址:https://arxiv.org/pdf/1409.0473
《A Simple Neural Network Module for Relational Reasoning》
论文地址:https://arxiv.org/pdf/1706.01427
Transformers:
《Attention Is All You Need》
论文地址:https://arxiv.org/pdf/1706.03762
《The Annotated Transformer》
论文地址:https://nlp.seas.harvard.edu/annotated-transformer/
《Scaling Laws for Neural Language Models》
论文地址:https://arxiv.org/pdf/2001.08361
信息论:
《The First Law of Complexodynamics》
论文地址:https://scottaaronson.blog/?p=762
《Keeping Neural Networks Simple by Minimizing the Description Length of the Weights》
论文地址:https://www.cs.toronto.edu/~hinton/absps/colt93.pdf
《A Tutorial Introduction to the Minimum Description Length Principle》
论文地址:https://arxiv.org/pdf/math/0406077
《Kolmogorov Complexity and Algorithmic Randomness》
论文地址:https://www.lirmm.fr/~ashen/kolmbook-eng-scan.pdf
《Quantifying the Rise and Fall of Complexity in Closed Systems: The Coffee Automaton》
论文地址:https://arxiv.org/pdf/1405.6903
其他项:
《GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism》
论文地址:https://arxiv.org/pdf/1811.06965
《Variational Lossy Autoencoder》
论文地址:https://arxiv.org/pdf/1611.02731
《Neural Quantum Chemistry》
论文地址:https://arxiv.org/pdf/1704.01212
《Machine Super Intelligence》
论文地址:https://www.vetta.org/documents/Machine_Super_Intelligence.pdf
《Meta-Learning with Memory-Augmented Neural Networks》 论文地址:https://proceedings.mlr.press/v48/santoro16.pdf 《Prototypical Networks for Few-shot Learning》 论文地址:https://arxiv.org/abs/1703.05175 《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》 论文地址:https://proceedings.mlr.press/v70/finn17a/finn17a.pdf
《Human-level concept learning through probabilistic program induction》 https://amygdala.psychdept.arizona.edu/labspace/JclubLabMeetings/Lijuan-Science-2015-Lake-1332-8.pdf 论文地址: 《Neural Architecture Search with Reinforcement Learning》 论文地址:https://arxiv.org/pdf/1611.01578 《A Simple Neural Attentive Meta-Learner》 论文地址:https://arxiv.org/pdf/1707.03141
《Hindsight Experience Replay》 论文地址:https://arxiv.org/abs/1707.01495 《Continuous control with deep reinforcement learning》 论文地址:https://arxiv.org/abs/1509.02971 《Sim-to-Real Transfer of Robotic Control with Dynamics Randomization》 论文地址:https://arxiv.org/abs/1710.06537 《Meta Learning Shared Hierarchies》 论文地址:https://arxiv.org/abs/1710.09767 《Temporal Difference Learning and TD-Gammon ,1995》 论文地址:https://www.csd.uwo.ca/~xling/cs346a/extra/tdgammon.pdf 《Karl Sims - Evolved Virtual Creatures, Evolution Simulation, 1994》 论文地址:https://dl.acm.org/doi/10.1145/192161.192167 《Emergent Complexity via Multi-Agent Competition》 论文地址:https://arxiv.org/abs/1710.03748 《Deep reinforcement learning from human preferences》 论文地址:https://arxiv.org/abs/1706.03741
Yann LeCun 等人的工作,他在 CNN 的实际应用方面做出了开创性的工作 ——《Gradient-based learning applied to document recognition》
Ian Goodfellow 等人的工作,他在生成对抗网络(GAN)方面的工作长期主导了图像生成领域 ——《Generative Adversarial Networks》 论文地址:https://arxiv.org/pdf/1406.2661 Demis Hassabis 等人的工作,他在 AlphaFold 方面的强化学习研究获得了诺贝尔奖 ——《Human-level control through deep reinforcement learning》、《AlphaFold at CASP13》 论文地址:https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf