共晶高熵合金(Eutectic high-entropy alloy,EHEAs)结合了传统共晶合金和高熵合金的潜在优势,具有优异的铸造性能和力学性能,在工程领域中显示出广阔的应用前景。然而,在共晶高熵合金中,强度的提高通常伴随着延展性的损失,限制了其大规模工业化应用。为了进一步强化共晶高熵合金,常州大学刘祥奎等人通过采用冷轧+退火的方法在Ni49Fe28Al17V6共晶高熵合金中构建非再结晶和再结晶区域组合的双相异质结构,显著提高合金室温及低温力学性能。研究结果表明,室温条件下(298 K),该合金屈服强度为1550 MPa,抗拉强度为1772 MPa,均匀延伸率为16.5%。低温(77 K)条件下,该合金屈服强度提高至1877 MPa,抗拉强度提高至2157 MPa,均匀延伸率保持10%。这种优异的室温力学性能主要归因于异质变形诱导(HDI)强化,而低温下超高的强度不仅源于HDI强化,还源于变形孪晶与高密度位错的强烈相互作用。本研究结果为高性能合金的开发和实现共晶高熵合金在低温极端环境的工程应用提供新的思路。相关研究以题为“Ultra-high strength and ductility of eutectic high-entropy alloy with duplex heterostructure at room and cryogenic temperatures”发表在Journal of Materials Science & Technology上。
第一作者:刘祥奎
通讯作者:刘祥奎,蒋珍飞
通讯单位:常州大学,上海交通大学
原文链接:https://doi.org/10.1016/j.jmst.2024.10.008
图1、铸态和轧制-退火态EHEAs(CR-A750 EHEA)的显微组织。(a) 铸态EHEA的SEM显微组织;(b) 铸态EHEA的HAADF-STEM图像;(c-d) FCC/L12和B2对应的SAED图;(e) EBSD IPF图;(f) EBSD相图;(g) EBSD KAM图;(h) 再结晶晶粒、亚结构和变形晶粒的EBSD图;(i) 轧制-退火态EHEA的明场TEM图像;(j) B2片层中L12纳米析出相的TEM图像;(k) L12纳米析出相的TEM-EDS图谱;(l) L12纳米析出相的HRTEM图像和相应的SAED图;(m, n, o)明场TEM图像;(p-q) L12和B2相对应的超晶格衍射图像
图2、CR-A750 EHEAs在室温和低温下的力学性能。(a) 拉伸工程应力-应变曲线;(b) 应变硬化率曲线,插图为真应力-应变曲线;(c) 室温屈服强度与均匀延伸率性能对比图;(d) 低温屈服强度与均匀延伸率性能对比图
图4、CR-A750 EHEA低温变形组织。
综上,作者通过优化热机械加工工艺,采用冷轧(轧制变形量87%)和退火工艺(750℃,2小时)在Ni49Fe28Al17V6共晶高熵合金中构建了一种双相异质片层结构,使得该合金在室温和低温环境下均表现出优异的力学性能。优异的室温力学性能主要是由于软硬两相中异质结构引起的HDI强化,而超高低温强度不仅源于异质结构引起的HDI强化,还源于变形孪晶和高密度位错的强烈相互作用。相关研究结果为开发面向工业应用的高性能合金及实现共晶高熵合金在极端环境中的大规模应用提供了新的思路。
Xiangkui Liu, Jingying Liu, Chenglong Zhou, Weixia Dong, Xuecong Zhang, Qianye Wang, Huiqing Xu, Xulong An, Dandan Wang, Wei Wei, Zhenfei Jiang, Ultra-high strength and ductility of eutectic high-entropy alloy with duplex heterostructure at room and cryogenic temperatures, J. Mater. Sci. Technol. (2024).
https://doi.org/10.1016/j.jmst.2024.10.008