基于MATLAB的常规数字通信系统信号处理流程【附全部MATLAB代码】

文摘   2025-01-21 21:27   山东  

微信公众号:EW Frontier
关注可了解更多的雷达、通信、人工智能相关代码。问题或建议,请公众号留言;
如果你觉得EW Frontier对你有帮助,欢迎加入我的知识星球或面包多,更多代码等你来学
知识星球:https://wx.zsxq.com/dweb2/index/group/15552518881412
面包多:https://mbd.pub/o/author-a2mYl2tsbA==/work

QQ交流群:729981694

如有侵权请联系删除~

简介

存储库包含一个 Matlab .m 文件,该文件模拟 8PSK 信号从发射器传播到接收器,通过不同的通道 Impairments。

实施的主要阶段是:

* Generatelog2(M)×100000 个随机位。其中 M = 8 表示 PSK。

* 在生成器矩阵 G = (Ik |P).

  生成器矩阵的奇偶校验数组为

  p = |1 0 1|

      |1 1 1|

      |1 1 0|

      |0 1 1|

* 使用格雷映射从编码的比特流生成 100 000 个 8-PSK 符号。

* 在生成的 8-PSK 符号上实施升余弦根发射机滤波器 (RRC)。

* 在传输符号上添加了 AWGN 噪声和复杂的通道脉冲响应。

* 接收器 RRC 滤波器的实施。

* 使用基于最小均方 (LMS) 算法的均衡器进行信道均衡。

* 符号的灰度解码和解调到接收到的比特流。

* 汉明解码。

* SNR 从 0dB 到 20dB 的误码率 (BER) 计算。

MATLAB代码

clc;clear;%{    COMM.SYS.400 Digital Communication Matlab Project    Usama Saghir    Student no# 152105769    email: usama.saghir@tuni.fi%}
% TASK 2.1 TRANSMITTERsymbol_rate = 40e6; % Rs = 40Mhz;M = 8; % Modulation order = 8roll_off = 0.2; % Roll-off factor alphaoversample = 4; % Oversampling factorFs = oversample*symbol_rate; % Sampling Freq = (Oversampling_factor)*(Symbol Rate)Ts = 1/Fs; % Sampling Time intervalNd = 16; % Duration of RRC Filter in symbols
org_bitstream = randi([0, 1], 1, (log2(M)*10^4)); % Random Bits generationbitstream = org_bitstream;%% The follwoing section implements Error control. To run without error coding comment out this section and Error decoder section from line 233 to 258.
%ERROR CONTROL CODING, HAMMING(7,4)k = 4; % number of source bitsn = 7;ind = 1; % variable to track for loop iterationsPar_arry = [1 0 1; 1 1 1; 1 1 0; 0 1 1]; % Parity matrixG = [eye(k), Par_arry]; % Generator matrix for i= 1:k:length(bitstream) cwdword(:,ind) = mod(bitstream(i:i+k-1)*G,2); %Generating code words ind = ind+1;endbitstream = (cwdword(:))';
%%bitstream = reshape(bitstream,log2(M),[]); %{ The above line converts the singular bit stream into a log2(M)xY matix such that the each coloum represents a symbol andthe total number of coloums is equal to the total number of symbols %}bit_dec = 2.^(log2(M)-1:-1:0); % Creates any array of powers of 2 to convert binary into decimalsymbol_stream = bit_dec*bitstream; % Converts the corresponding bits into their respective symbols indexisTx_signal = pskmod(symbol_stream, M, pi/M,'gray'); % Applies PSK-modulation of order 'M' with phaseoffset = pi/8 and Gray mapping scatterplot(Tx_signal);grid on; % Plots the generated Tx symbolstitle('8-PSK Constillation Diagram');
up_Txsignal = zeros(1, oversample*size(symbol_stream,2)); % Creates an array of zerosup_Txsignal(1:oversample:oversample*size(symbol_stream,2)) = Tx_signal; % Inserts zeros between each symbol to oversample the signalRRC = rcosdesign(roll_off, Nd, oversample, 'sqrt'); % Generates an RRC filter with roll-off factor, Nd, oversample.Filt_Tx = filter(RRC,1,up_Txsignal); % Applying RRC-filter on usampled Tx signalFilt_Tx = Filt_Tx(1+(length(RRC)-1)/2:end); % Correcting filter delay
% Below lines of code is used to plot the Transmiter RRC-Filter response in time domain figurefreq_axis = Nd*oversample/2*Ts;plot((-freq_axis:Ts:freq_axis).*(10^6),RRC,'k');hold on;stem((-freq_axis:Ts:freq_axis).*(10^6),RRC,'ro');grid on;xlabel('time [microsec]');ylabel('Amplitude');title('Transmiter RRC filter Response');legend('Pulse shape','Ideal symbol-sampling locations');
figure()% Below function plots the Amplitude Response using FFT size of 2^14.% (Function defined at the end) ampl_res(Filt_Tx, Fs, Ts);title('Filtered TX signal');grid on;ylim([0 500]);
%%
%TASK 2.2% Using Model 10 as our complex-valued channel impulse response.h = [ 0.8077 + 0.3767i, -0.4628 + 0.5250i, 0.5862 + 0.1055i, -0.4393 + 0.0806i, -0.2813 - 0.1445i]; % Model 10L1 = 0; % Maximum tap is the first one, hence, L1 is 0 and L2 is 4. L2 = 4;SNR = 0:2:25;
Propg_Tx = filter(h,1,Filt_Tx); % Applying complex-valued channel to the Filtered transmitted signal.Propg_Tx = Propg_Tx(L1+1:end); % Removing the delay, if channel is anti-causal.noise = (1/sqrt(2))*(randn(size(Propg_Tx))... + 1j*randn(size(Propg_Tx))); % Complex white Gaussian random noiseP_sig = var(Propg_Tx); % Signal powerP_noise = var(noise); % Noise powerPrg_N_Tx = zeros(length(SNR), length(Propg_Tx));noise_scaling_factor = sqrt(P_sig/P_noise./10.^(SNR./10)*(oversample/(1+roll_off))); % Scaling noise vector to get SNR 0 to 20 dBfor i = 1:length(noise_scaling_factor) Prg_N_Tx(i,:) = Propg_Tx +... (noise_scaling_factor(i)*noise); %Transmitted signal + ISI + AWGNendfor i = 1:length(SNR) figure(4) subplot(ceil(sqrt(length(SNR))), ceil(sqrt(length(SNR))), i) plot(real(Prg_N_Tx(i,:)), imag(Prg_N_Tx(i,:)),'.','LineWidth',3);grid on; % Constillation plot of transmitted Tx symbols xlabel('In-Phase');ylabel('Quadrate Phase'); title(sprintf('8-PSK(%d dB) + ISI + AWGN',SNR(i)));end
%Plotting amplitude and phase response of the complex-valued channel:figure(5);[H,f]=freqz(h,1,-symbol_rate/2:symbol_rate/200:symbol_rate/2,symbol_rate); subplot(221)plot(f/1e6,20*log10(abs(H)),'b'); grid on;xlabel('Frequency [MHz]');ylabel('Amplitude response [dB]');title('Frequency Responses');legend('ISI Channel');
subplot(222)plot(f/1e6, phase(H)*(180/pi)); grid on;xlabel('Frequency [MHz]');ylabel('Phase response [degree]');title('Phase Responses');legend('ISI Channel');
figuresubplot(211)ampl_res(Filt_Tx, Fs, Ts);legend('Amplitude response');title('TX signal + RRC');grid on;ylim([0 500]);
subplot(212)ampl_res(Propg_Tx, Fs, Ts); legend('Amplitude response');title('TX signal + RRC+ ISI+ AWGN');grid on;ylim([0 500]);
%%%TASK 2.3Rx_signal = zeros(length(SNR), length(Prg_N_Tx));rx_temp = 0;for i = 1:length(SNR) rx_temp = filter(RRC,1,Prg_N_Tx(i,:)); % Applying RRC-filter on recieved Rx signal rx_temp = rx_temp(1+(length(RRC)-1)/2:end); % Correcting filter delay rx_temp = downsample(rx_temp, oversample); % Downsampling the recieved Rx signal Rx_signal(i,1:length(rx_temp)) = rx_temp;endRx_signal(:, length(rx_temp)+1:end) = [];
for i = 1:length(SNR) figure(7) subplot(ceil(sqrt(length(SNR))), ceil(sqrt(length(SNR))), i) plot(real(Rx_signal(i,:)), imag(Rx_signal(i,:)),'.','LineWidth',3);grid on; % Constillation plot of recieved Rx symbols xlabel('In-Phase');ylabel('Quadrate Phase'); title(sprintf('Recieved 8-PSK(%d dB)',SNR(i)));end

% Now implementing Least Mean Squares (LMS) algorithm-based equalizer for the channel equalization.Equ_Rx_signal = zeros(length(SNR), length(Rx_signal));N1 = 15;N2 = 15;step_size = 0.001; % step-size of the algorithmLMS_coff = zeros(N1+N2+1,length(SNR));for j = 1:length(SNR) rx_temp = Rx_signal(j,:); c_LMS = zeros(N1+N2+1,1); % equalizer coefficients, initializations for i = N1+1:length(rx_temp)-N2 rk = flipud(rx_temp(i-N1:i+N2).'); % Received signal vector Ek(i) = Tx_signal(i) - c_LMS.'*rk; % Error signal, we assume a known symbol sequence c_LMS = c_LMS + step_size*Ek(i)*conj(rk); % LMS update ! end LMS_coff(:,j) = c_LMS; rx_temp = filter(c_LMS,1,Rx_signal(j,:)); % Applying channel estimation on recieved signal rx_temp = rx_temp(N1+1:end); % Correcting Equ_Rx_signal(j,1:length(rx_temp)) = rx_temp;end
figure(8);hold on;grid on;plot(abs(Ek)); title('Convergence behavior of the LMS-algorithm.');ylabel('LMS error'); xlabel('Iteration index');
figure(9); hold on; stem(abs(conv(h,c_LMS)));grid on;title('Effective impulse response (abs) of the equalized system ')
figure(10); [H,f]=freqz(h,1,-symbol_rate/2:symbol_rate/200:symbol_rate/2,symbol_rate); plot(f/1e6,20*log10(abs(H)),'b');xlabel('Frequency [MHz]');ylabel('Amplitude response [dB]');
hold on; [H,f]=freqz(c_LMS,1,-symbol_rate/2:symbol_rate/200:symbol_rate/2,symbol_rate);plot(f/1e6,20*log10(abs(H)),'r');
[H,f]=freqz(conv(c_LMS,h),1,-symbol_rate/2:symbol_rate/200:symbol_rate/2,symbol_rate);plot(f/1e6,20*log10(abs(H)),'g');grid on;legend('Channel','LMS Equalizer','Total Response (LMS)');
figure(5)[H,f]=freqz(c_LMS,1,-symbol_rate/2:symbol_rate/200:symbol_rate/2,symbol_rate);subplot(223)plot(f/1e6,20*log10(abs(H)),'b'); grid on;xlabel('Frequency [MHz]');ylabel('Amplitude response [dB]');title('Frequency Responses');legend('ISI Channel');
subplot(224)plot(f/1e6, phase(H)*(180/pi)); grid on;xlabel('Frequency [MHz]');ylabel('Phase response [degree]');title('Phase Responses');legend('LMS Equilizer');

Equ_Rx_signal(:, length(rx_temp)+1:end) = []; for i = 1:length(SNR) figure(11) subplot(ceil(sqrt(length(SNR))), ceil(sqrt(length(SNR))), i) plot(real(Equ_Rx_signal(i,:)), imag(Equ_Rx_signal(i,:)),'.','LineWidth',3);grid on; % Constillation plot of Equilized Rx symbols xlabel('In-Phase');ylabel('Quadrate Phase');% legend(sprintf('Equilized 8-PSK- %d dB',SNR(i))); title(sprintf('Equilized 8-PSK- %d dB',SNR(i)));end

% Plotting the original symbols, recieved symbols, and the equilized% recieved symbols on the same plot for comparison.for i = 1:length(SNR) figure(12); subplot(ceil(sqrt(length(SNR))), ceil(sqrt(length(SNR))), i) plot(real(Rx_signal(i,:)), imag(Rx_signal(i,:)),'y.','LineWidth',3);hold on; plot(real(Equ_Rx_signal(i,:)), imag(Equ_Rx_signal(i,:)), 'c.','LineWidth',3);hold on; plot(real(Tx_signal), imag(Tx_signal), 'kx','LineWidth',2);hold on; set(gca,'Color',[.7 .7 .7]); xlabel('In-Phase');ylabel('Quadrate Phase');title('Equilized 8-PSK Constillation Diagram');endlegend('Recieved symbols','Equlized Recieved symbols','Original Transmitted symbols');grid on; %%demod_recieved = zeros(length(SNR), length(Equ_Rx_signal));out_bitstream = zeros(length(SNR),length(demod_recieved)*3); % Creating a variable to contain the output bitstreamfor u = 1:length(SNR) rx_temp = []; rx_temp = pskdemod(Equ_Rx_signal(u,:),M,pi/M,'gray'); % Demodulating the recieved signal demod_recieved(u,:) = rx_temp; % Demodulating the recieved signal for i = 1:length(demod_recieved) % Converting the symbol index into binary bitstream reminder = 0; for j = 1:log2(M) x = floor((demod_recieved(u,i)-reminder)/bit_dec(j)); out_bitstream(u,((i-1)*3+j)) = x; reminder = reminder+bit_dec(j)*x; end end SNR_out(u,:) = out_bitstream(u,:); endber = zeros(1, length(SNR));
%% The follwoing section implements Error control. To run without error decoding comment out this section and Error coder section from line 20 to 33.%ERROR CONTROL DECODING, HAMMING(7,4)
out_bitstream = []; for z = 1:length(SNR) bitstream2 = SNR_out(z,:); ind = 1; H = [Par_arry', eye(n-k)]; error = mod(eye(n)*H',2); s = zeros(n-k, (floor(length(bitstream2)/n)*n-n)/n); recieved = zeros(k, (floor(length(bitstream2)/n)*n-n)/n); for i= 1:n:floor(length(bitstream2)/n)*n-n s(:,ind) = mod(bitstream2(i:i+n-1)*H',2); if sum(s(:,ind)) == 0 recieved(:,ind) = bitstream2(i:i+k-1); else matching_rows = find(all(error == s(:,ind)', 2)); bitstream2(i+matching_rows(1)-1) = ~bitstream2(i+matching_rows(1)-1); recieved(:,ind) = bitstream2(i:i+k-1); end ind = ind+1; end out_bitstream(z,:) = recieved(:)';end

%%for z = 1:length(SNR) err_vec = mod(org_bitstream(1:length(out_bitstream))+out_bitstream(z,:), 2); % Generating error vector err_vec = sum(abs(err_vec)); % Calculating total error ber(z) = err_vec/length(out_bitstream); % Calculating Bit-Error Rate if ber(z) < 10^-8 ber(z) = 10^-8; % As 0 is undefined on a semi-log scale it cannot be plotted. Hence % BER is revalued as 10^-8 which will be the minimum BER value of % my semilog scale, just for illustration purposes. endend
figure(13)semilogy(SNR,ber, 'ko', 'LineWidth',2);grid ontitle('Bit error rate');xlabel('SNR [dB]');ylabel('BER');axis([min(SNR)-3 max(SNR)+3 10^-8 10]);
figure(14)eyediagram(real(Filt_Tx), 8, (1/symbol_rate));grid on;title('Eye Diagram of Generated Signal');xlabel('Time (s)');ylabel('Amplitude');

function ampl_res(signal, sampling_freq, sampling_time) % Function to plot the Amplitude Response of a signal NFFT = 2^14; % FFT size f = -sampling_freq/2:1/(NFFT*sampling_time):sampling_freq/2-1/(NFFT*sampling_time); % frequency vector plot(f/1e6, fftshift(abs(fft(signal, NFFT)))); xlabel('Frequency [MHz]');ylabel('Amplitude');end

仿真结果

相关学习资料见面包多链接https://mbd.pub/o/author-a2mYl2tsbA==/work

欢迎加入我的知识星球:https://wx.zsxq.com/dweb2/index/group/15552518881412,永久获取更多相关资料、代码。

EW Frontier
学术交流123456群已满,进群请加学术交流Q7群:554073254,进群请备注单位+研究方向。
 最新文章