医学生信必看 | Nature 年度十大人物:非人类ChatGPT纳入榜单

文摘   2024-08-07 08:10   江苏  


在科研领域,人工智能(AI)如今已经发展成为一股不可忽视的力量。尤其是在去年年末,AI 不仅仅与人类平起平坐,更是荣获了备受瞩目的 Nature 大奖。


于 2023 年 12 月 13 日,《Nature》揭晓了其年度十大人物,而引人瞩目的是第 11 位竟然是一位「非人类」成员,即 ChatGPT。这标志着 ChatGPT 以及其他生成型人工智能程序正在深刻地塑造科学家的工作模式。


图源Nature


Nature 观察到,AI 已经不再仅仅是一项技术工具,而是已经深刻地影响了科学研究的方方面面,包括课题设计、研究操作、数据分析以及论文撰写等多个层面。


《Nature》十大人物


1.Kalpana Kalahasti: To the Moon

2.Marina Silva: Amazon protector

3.Katsuhiko Hayashi: Rewiring reproduction

4.Annie Kritcher: Fusion igniter

5.Eleni Myrivili: Warming warden

6.Ilya Sutskever: AI visionary

7.James Hamlin: Superconductivity sleuth

8.Svetlana Mojsov: Unsung drug developer

9.Halidou Tinto: Malaria fighter

10.Thomas Powles: Cancer explorer


次公众号文章主要包含以下培训课程:

课程一:医学专题ChatGPT/GPT4论文写作、数据分析建模与绘图培训
课程二:第十七届ChatGPT/GPT-4科研应用、论文写作、数据分析与AI绘图实战培训
课程三:全国人工智能Python机器学习、深度学习与SCI科研项目实战培训


课程一:


各相关单位:

在当前医学研究和临床实践中,人工智能技术的应用日益重要,特别是像ChatGPT这样的先进模型,它们正在彻底改变我们理解和处理医学信息的方式。本课程旨在深入探讨ChatGPT及其他人工智能模型如何革新医学领域,提供一个系统的学习和实践平台,以帮助医学专业人士、研究者和技术开发者充分利用这些技术,以提高论文写作效率,数据分析能力,模型建模能力,并加速科学研究的进程。特别重要的是,本课程将详细介绍ChatGPT在医学论文写作中的应用。学习如何利用ChatGPT来进行文献搜索、论文摘要、论文内容的撰写、以及技术方法的详细解释,从而显著提高研究效率和论文质量。通过掌握ChatGPT的高级提示技巧和编辑建议,参与者可以学习如何准确地利用这些工具来优化论文结构,增强论证的逻辑性,以及提升论文的整体表达质量。课程内容还将涵盖ChatGPT在医学数据分析、疾病模式识别、个性化医疗建议、医学图像识别等方面的应用。通过对这些高级模型的学习和掌握,参与者不仅能够理解机器学习和深度学习的基本原理和最佳实践,还能够实际操作这些工具,解决真实世界中的医学问题。课程还将包括一系列实操演练,让参与者动手实现从简单到复杂的AI解决方案,例如从自动化处理医学图像到利用机器学习算法预测疾病的发展趋势。这些演练不仅帮助学员巩固理论知识,更加深对技术的直观理解。总而言之,这个课程提供了一个宝贵的机会,让医学和技术领域的专业人士能够在AI技术快速发展的今天,掌握并应用这些先进工具,以推动医学领域的创新和效率。现通知如下:

一、主办单位

主办单位:

中国智慧工程研究会职业发展规划工作委员会

承办单位:

中科软研(北京)科学技术有限公司、北京富卓佰扬科技有限公司

二、参会对象

本期培训班拟正式招生50名,全国三甲医院、医学研究所及高校从事临床医学、生物医学研究的临床医生、副主任医师、主任医师及临床医学博士、硕士研究生;肿瘤科、神经科、乳腺科、肝胆科、骨科、胃肠外科、血液科、皮肤科、肾内科、免疫科、妇产科、生殖科、心外科、神经内科、感染科、医技科等,需要发表论文的相关人员;医学研究人员和学生:希望利用人工智能技术提高研究效率和质量的医学研究人员和学生;临床医生:需要在临床实践中应用人工智能进行疾病诊断和治疗决策支持的医生;生物信息学家:致力于开发和使用AI工具来分析医学数据的生物信息学家;医学数据分析师:希望使用先进的数据分析技术提高工作效率和准确性的专业人员;AI技术开发者:专注于医学应用开发的AI技术人员和软件开发者;健康科技创业者:探索利用AI技术改进健康服务和产品的创业者。

三、培训时间

培训时间:2024年08月23日—8月25日 共三天。
   地点:上海站+线上直播同步
   注:不方便到现场的学员,可线上参会,全程有录屏,支持回放。

四、培训特色

1.【福利】赠送每人1个GPT4o会员账号,没有使用次数限制,不需要翻墙。2.倡导“安全,绿色”上网,全程采用国内直连的ChatGPT官网平台,网站界面,使用方式,所有功能与国外ChatGPT官网完全一致。讲解不需要付费,不需要充值的GPT-4账号,可使用GPT-4o、Claude3 Opos, Google Gemini等主流大模型,以及GPT-4的学术相关插件;3.赠送一个可以终身免费使用ChatGPT账号;4.针对实际医学SCI论文进行解读分析,详细讲解如何结合ChatGPT进行SCI论文写作;5.课程内容的90%以上为实际案例操作,深度剖析ChatGPT在医学科研学术中的最佳应用。6.全世界最聪明的AI:GPT4功能介绍:(联网能力、图像分析能力、文件上传分析能力、数据分析能力、自定义GPTs应用、DALLE3绘图功能);7.本培训提供永久答疑服务。课后实践学习的过程中遇到问题,可以随时找老师进行交流;8.参加本次培训后,后期相同的培训本人可免费参加线上1次,现场培训可终身免费参加,不限次数;9.全程有录屏,可以回放,培训结束后赠送一套完整的视频教程;10.前30位报名赠送往届培训视频及资料;

五、培训目标

1.能够使用ChatGPT完成医学论文撰写、修改论文及工作报告,提供写作能力及优化工作,提升您的写作能力及提出优化方案;2.掌握AI在医学领域的应用:深入理解各类AI模型,如ChatGPT/GPT4,Claude3,Gemini,CNN,LSTM等,及其在医学研究和临床实践中的具体应用;3.技能提升:通过实战演练掌握使用AI工具处理医学影像、生物数据分析、疾病预测等医学问题的能力;4.编程与数据分析能力:掌握如何使用Python和相关的数据科学库进行医学数据的编程处理和分析;5.研究能力增强:获得使用AI技术进行医学研究和撰写科学论文的实践经验;6.创新思维:培养利用AI解决复杂医学问题的创新思维和解决方案开发能力;7.职业发展:为从事医学研究、临床应用和医学数据分析的职业生涯提供技术支持和知识储备。

六、培训内容


大章节

小章节

第一章:2024年AI在医学中的应用介绍及实操

1.OpenAI最新模型-GPT4o介绍

2.GPT4o与ChatGPT3.5区别

3.国外大语言模型Claude3,Gemini,LLama3技术详解

4.国内大语言模型文心一言,通义千问,Kimi,智谱清言,星火认知使用介绍。

5.GPT4o的各种插件应用介绍

6.AI工具与科研应用的结

 

 

 

 

第二章:大语言模型(LLM)Prompt提示词高级使用技巧

1.大语言模型和搜索引擎的区别

2.PromptEngineering提示词工程介绍

3.(课堂动手练习)技巧1:角色扮演

4.(课堂动手练习)技巧2:使用不同的语气

5.(课堂动手练习)技巧3:给出具体任务

6.(课堂动手练习)技巧4:利用上下文管关联的特点

7.(课堂动手练习)技巧5:零样本思维链提示-提高模型逻辑推理能力

8.(课堂动手练习)技巧6:多样本思维链提示-提升模型模仿能力

9.(课堂动手练习)技巧7:自洽性-提升模型数学能力

10.(课堂动手练习)技巧8:生成知识提示-提升模型知识水平

11.如何写好一篇论文的提示词

12.如何与AI交流医学相关科研问题

第三章:AI在医学教学/研究中的应用实战案例

1.(课堂动手练习)使用AI进行医学文献翻译

2.(课堂动手练习)使用AI生成临床研究的数据表

3.(课堂动手练习)使用AI识别医学图像中的公式并保存

4.(课堂动手练习)使用AI将医学研究文章中的数据整理成表格

5.(课堂动手练习)使用AI帮你进行用户评论分类

6.(课堂动手练习)使用AI协助撰写医学工作报告

7.(课堂动手练习)使用AI快速生成选择/填空/问答/判断题

第四章:AI辅助医学论文搜索与阅读

1.(课堂动手练习)利用AI进行医学论文搜索

2.(课堂动手练习)医学论文拓展平台使用

3.(课堂动手练习)最好用的AI医学论文阅读交流神器介绍

4.(课堂动手练习)RAG检索增强生成在医学领域的应用

5.(课堂动手练习)利用AI进行医学论文阅读总结交流

6.(课堂动手练习)最好用的AI医学论文翻译神器介绍

7.(课堂动手练习)利用AI对医学论文中的公式和图表讲解

第五章:AI辅助医学论文写作ABCD模型(通用方法论)

1.(课堂动手练习)【A模式】AI直接写医学论文(给定框架或者不给定框架)

2.(课堂动手练习)【B模式】投喂式写作(指定引用医学文献的写作)

3.(课堂动手练习)【C模式】模仿式写作(指定范文,给出医学观点,套用格式)

4.(课堂动手练习)【D模式】连接医学论文数据库进行写作(搜索相关医学论文,参考相关内容)

 

 

第六章:让AI成为您的医学论文写作助手

1.(课堂动手练习)利用AI生成医学论文选题

2.(课堂动手练习)利用AI辅助医学论文大纲撰写

3.(课堂动手练习)利用AI辅助写医学论文摘要

4.(课堂动手练习)利用AI辅助写医学论文前言

5.(课堂动手练习)利用AI辅助写医学技术方法

6.(课堂动手练习)利用AI辅助描述医学实验数据

7.(课堂动手练习)利用AI辅助进行医学数据分析

8.(课堂动手练习)利用AI辅助写医学论文结论

9.(课堂动手练习)利用AI进行医学论文写作翻译

10.(课堂动手练习)利用AI帮你生成完整的医学文献综述(附带真实参考文献)

11.(课堂动手练习)AI写作过程中自动标注医学参考文献的2种方法

 

第七章:AI辅助医学科研论文优化

1.(课堂动手练习)利用AI辅助中英文医学论文润色

2.(课堂动手练习)利用AI辅助医学论文润色并生成表格对比润色效果

3.(课堂动手练习)利用AI进行医学论文降重的2种方案

4.(课堂动手练习)利用AI提出医学论文审稿意见和具体修改方案

5.(课堂动手练习)如何判别医学文章是不是AI生成

6.(课堂动手练习)如何避免AI生成的医学文章被检测

第八章:AI在医学科研绘图中的应用

1.(课堂动手练习)根据本地医学数据绘制散点图,折线图,柱状图,饼图等

2.(课堂动手练习)绘制不同医学特征之间的相关系数图

3.(课堂动手练习)绘制不同医学数据特征的多变量联合分布图

4.(课堂动手练习)绘制医学数据缺失值可视化图

5.(课堂动手练习)绘制不同医学模型算法的结果对比图

6.(课堂动手练习)绘制医学模型算法的ROC曲线图

7.(课堂动手练习)绘制医学特征重要性排序图

8.(课堂动手练习)其他各种医学图像的AI自动绘图方法

第九章:SCI医学论文解读及写作

详细解读几篇经典SCI医学论文。

ChatGPT应用:将医学科研项目中的数据处理、分析、建模和可视化成果转化为学术论文,并利用ChatGPT优化医学论文写作流程。

数据处理

描述:详述医学数据预处理、清洗和转换步骤。

ChatGPT应用:生成数据处理部分的文本描述,确保术语准确。

建模方法

描述:阐明医学模型选择、训练过程和参数优化。

ChatGPT应用:帮助撰写模型选择和优化策略的逻辑论述。

结果可视化

描述:展示关键医学图表,如准确率和ROC曲线,并解释其意义。

ChatGPT应用:生成图表的描述和解释,简洁明了。

成果讨论

描述:分析医学模型表现,讨论其在相关领域的应用潜力。

ChatGPT应用:生成对模型结果的深入讨论和潜在应用的描述。

论文撰写

ChatGPT应用:辅助撰写医学论文各部分,包括摘要、引言和结论,提高写作效率。

第十章:AI的拓展应用

1.(课堂动手练习)使用AI工具自动创建医学教育PPT

2.(课堂动手练习)使用AI工具根据医学研究文章内容创建PPT

3.(课堂动手练习)使用AI工具快速产出医学科普短视频

第十一章:定制自己的GPTs应用

1.(课堂动手练习)热门的自定义GPTs使用介绍

2.(课堂动手练习)通过聊天交流的方式制作针对医学领域的GPTs

3.(课堂动手练习)通过自定义的方式制作医学研究专用GPTs

4.(课堂动手练习)GPTs的3种分发方式

5.(课堂动手练习)GPTs的action功能介绍

6.(课堂动手练习)论文改进专家(GTPs)

7.(课堂动手练习)论文搜索(GTPs)

8.(课堂动手练习)论文写作(GTPs)

第十二章:GPT-4o功能详解

1.(课堂动手练习)GPT-4o不同情绪的语音功能介绍

2.(课堂动手练习)GPT-4o联网功能介绍

3.(课堂动手练习)GPT-4o图像识别能力详细解析

4.(课堂动手练习)GPT-4o识别统计分析图并生成对应画图的代码

5.(课堂动手练习)GPT-4o识别图片中的表格数据并保存

6.(课堂动手练习)GPT-4o识别图片中的公式并进行编辑

7.(课堂动手练习)利用GPT-4o完成全自动数据分析、绘图、建模

8.(课堂动手练习)利用GPT-4o连接论文数据库

第十三章:最新绘图工具DALL-E3的医学绘图应用

1.(课堂动手练习)DALL-E3模型介绍2.(课堂动手练习)DALL-E3与GPT4结合使用

3.(课堂动手练习)DALL-E3中文提示词的使用

4.(课堂动手练习)DALL-E3根据上下文内容修改图片

5.(课堂动手练习)DALL-E3在图像中生成特定文字

6.(课堂动手练习)DALL-E3绘图结果的不断优化

第十四章:不会写代码也能成为医学领域编程高手

1.(课堂动手练习)利用AI实现某一特定功能的程序

2.(课堂动手练习)利用AI对代码进行解释

3.(课堂动手练习)利用AI进行代码纠错及修改

4.(课堂动手练习)利用AI回答代码疑问

5.(课堂动手练习)利用AI帮你优化代码

6.(课堂动手练习)利用AI读取本地医学数据然后写代码

7.(课堂动手练习)利用AI帮你提供完整项目代码并不断修正代码

8.(课堂动手练习)自动化AI编程助手介绍

第十五章:python基础学习

1.python的应用场景

2.(课堂动手练习)python环境安装配置

3.(课堂动手练习)print使用

4.(课堂动手练习)运算符和变量

5.(课堂动手练习)循环

6.(课堂动手练习)列表元组字典

7.(课堂动手练习)if条件

8.(课堂动手练习)函数

9.(课堂动手练习)模块

10.(课堂动手练习)类的使用

11.(课堂动手练习)文件读写

12.(课堂动手练习)异常处理

第十六章:科学计算模块Numpy和绘图模块Matplotlib学习

1. (课堂动手练习)numpy的属性

2. (课堂动手练习)创建array

3. (课堂动手练习)numpy的运算

4. (课堂动手练习)随机数生成以及矩阵的运算

5. (课堂动手练习)numpy的索引

6. (课堂动手练习)Matplotlib基础用法

7. (课堂动手练习)figure图像

8. (课堂动手练习)设置坐标轴

9. (课堂动手练习)legend图例

10. (课堂动手练习)scatter散点图

第十七章:人工智能概念详解

1.人工智能/机器学习/神经网络/深度学习

2.训练集/验证集/测试集介绍

3.监督学习/无监督学习/自监督学习

4.分类应用/回归应用/聚类应用

5.人工智能各种常见应用

6.AI算法是如何进行训练的

7.深度学习常用架构介绍

第十八章:数据特征工程

1.特征工程的意义

2.缺失值填充方法

3.数字类型特征处理

4.多值有序特征和多值无序特征处理

5.特征筛选方法

6.数据标准化和归一化处理

第十九章:机器学习常用算法

1.各种回归算法介绍与使用

2.各种分类算法介绍与使用

3.各种聚类算法介绍与使用     

4.LightGBM算法介绍与使用

5.所有的机器学习算法使用技巧总结分析

6.(课堂动手练习)使用回归算法完成医学成本预测

7.(课堂动手练习)使用多种算法完成乳腺癌预测

第二十章:糖尿病预测案例在科研论文中的应用(课堂动手练习)

1.相关论文内容解读,并分析该项目如何应用于论文写作

2. 项目简介

 - 目标定义:开发一个预测糖尿病的机器学习模型,基于患者的医疗指标数据来预测其是否患有糖尿病

3. 数据预处理

 - 数据加载:载入糖尿病数据集,并初步查看数据结构和基本统计信息

 - 数据清洗:识别并处理数据集中的异常值和缺失值。使用适当的方法填充缺失值(例如,均值填充)

 - 特征工程:分析各特征与糖尿病结果的关系。选择合适的特征进行模型训练

4. 探索性数据分析

 - 利用Seabornpairplot绘制不同特征之间的关系

 - 绘制热力图分析特征之间的相关性

5. 模型构建与训练

 - 选择模型:选择多个分类算法(如K-近邻、逻辑回归、神经网络、决策树、随机森林等)进行比较

6. 模型评估与优化

 - 结果可视化:使用条形图展示不同模型的性能比较

 - 模型解释:使用SHAP值解释模型的预测结果,以了解哪些特征对模型预测结果影响最大

7. 项目总结

 - 评估模型表现:综合评估模型的准确性和可解释性

 - 讨论与改进:基于模型表现,讨论可能的改进方法和实际应用中的潜在挑战

第二十一章:深度学习算法基础

1.单层感知器

2.激活函数,损失函数和梯度下降法

3.BP算法介绍

4.梯度消失问题

5.多种激活函数介绍

第二十二章:深度学习算法-卷积神经网络CNN应用

1.CNN卷积神经网络

2.卷积的局部感受野,权值共享介绍。

3.卷积的具体计算方式

4.池化层介绍(均值池化、最大池化)

5.same padding和valid padding介绍

6.LeNET-5卷积网络介绍

7.(课堂动手练习)医学识别案例

第二十三章:深度学习算法-长短时记忆网络LSTM应用

1.RNN循环神经网络介绍

2.RNN具体计算分析

3.长短时记忆网络LSTM介绍

4.输入门,遗忘门,输出门具体计算分析

5.堆叠LSTM介绍

6.双向LSTM介绍

7.(课堂动手练习)使用LSTM进行医学时间序列数据的分析

第二十四章:基于深度学习模型的图像识别(医学影像案例)

1.VGG16模型详解  2.ResNet模型详解  3.EfficientNet模型详解

4.(课堂动手练习)下载训练好的1000分类图像识别模型

5.(课堂动手练习)使用训练好的图像识别模型进行各种图像分类

6.(课堂动手练习)使用迁移学习训练疟疾细胞图像分类模型

第二十五章:医学领域中的AI项目汇总介绍

1.甲状腺图像分级

目标:开发一个深度学习模型,基于图像数据自动对甲状腺病变进行分级。

技术:使用预训练CNN模型和自定义顶层网络进行图像分类。

成果:模型能有效区分不同级别的甲状腺病变,并在测试集上表现出高准确率。

2.糖尿病预测项目

目标:利用机器学习算法预测个体是否将发展成糖尿病,基于患者的医疗指标数据。

技术:应用多种机器学习分类算法,并通过交叉验证方法评估模型性能。

成果:选定最佳模型,实现高准确率预测,并对模型预测结果提供解释。

3.心脏病预测项目

目标:使用临床数据预测个体是否患有心脏病。

技术:数据预处理,特征工程,和多模型评估。

成果:建立了具有良好准确率和解释性的预测模型。

4.乳腺癌预测项目

目标:开发一个模型预测乳腺癌的可能性,基于患者的医疗指标。

技术:分析数据,选择合适的机器学习算法进行模型训练。

成果:模型能够以高准确性预测乳腺癌,帮助早期诊断。

5.基因序列能量预测

目标:预测蛋白质结构的能量,基于其氨基酸序列。

技术:利用深度学习模型如LSTM处理序列数据。

成果:模型准确地预测蛋白质结构能量,助力生物医学研究。

辅助课程

1.课程总结及技术发展展望。

2.建立信群答疑群(课后提供终身免费答疑,提供一对一答疑)

3.配备AIGC/GPT/AI绘图/等教材,课后逐步提高能力。


七、培训专家

中国科学院、清华大学等科研机构的高级专家,人工智能领域一线实战专家,10年人工智能项目开发经验,8年人工智能行业培训经验。喜欢理论与实践相结合的教学风格,课程编排由浅入深,体系清晰完整。主持完成过多项国家及企业重大项目,做过多个医疗相关的AI项目,医学类AI项目经验丰富。拥有20项专利,出版人工智能相关书籍3本,曾给各大医院、科研院所、企业等单位完成过多项人工智能相关项目。业内顶尖IT培训平台30万学员好评率99%;

八、颁发证书


A类:可获得中科软研(北京)科学技术中心颁发的课程结业证书;


B类:可获得教育部主管下属机构颁发的高级《医疗大模型应用开发工程师》专业技术人才职业技能证书,纳入委员会数据库,全国通用可查;


C类:可获得工信部颁发的高级《人工智能应用工程师》职业技能证书,该证书可作为专业技术人员职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据,官网可查。


九、联系方式

   如需具体的红头文件培训通知,请联系我们获取,可开发票,方便报销。

报名咨询联系人:刘昊(刘老师)

E-mail: 823070714@qq.com
联系电话:13261851751
微信二维码:

课程二:




培训时间:8月27日、28日、29日  北京现场+直播授课
培训时间:9月06日、07日、08日  上海现场+直播授课
培训时间:9月20日、21日、22日  广州现场+直播授课

报名联系刘老师 13261851751(微信同号)
如需具体的红头文件培训通知,请联系我们获取,可开发票,方便报销。
注:全程有录屏,可以回放,课后提供答疑,可开发票,方便报销。


培训内容如下:(滑动查看更多


大章节

小章节

第一章2024年AI领域最新发展介绍

1.OpenAI最新模型-GPT4o介绍    

2.GPT4o与ChatGPT3.5区别

3.国外大语言模型Claude3,Gemini,LLama3技术详解

4.国内大语言模型文心一言,通义千问,Kimi,智谱清言,星火认知使用介绍。

5.GPT4o的各种插件应用介绍  

6.AI工具与科研应用的结合

第二章:大语言模型(LLM)Prompt提示词高级使用技巧

1.大语言模型和搜索引擎的区别 

2.PromptEngineering提示词工程介绍

3.(课堂动手练习)技巧1:角色扮演

4.(课堂动手练习)技巧2:使用不同的语气

5.(课堂动手练习)技巧3:给出具体任务

6.(课堂动手练习)技巧4:利用上下文管关联的特点

7.(课堂动手练习)技巧5:零样本思维链提示-提高模型逻辑推理能力

8.(课堂动手练习)技巧6:多样本思维链提示-提升模型模仿能力

9.(课堂动手练习)技巧7:自洽性-提升模型数学能力

10.(课堂动手练习)技巧8:生成知识提示-提升模型知识水平

11.如何写好一篇论文的提示词  

12.如何与AI交流科研问题

第三章:AI在教学/科研中的应用实战案例

1.(课堂动手练习)使用AI进行文献翻译  

2.(课堂动手练习)使用AI生成临床研究的数据表  

3.(课堂动手练习)使用AI识别公式并保存

4.(课堂动手练习)使用AI将文章中的数据整理成表格

5.(课堂动手练习)使用AI帮你进行文章内容分类

6.(课堂动手练习)使用AI协助撰写工作报告

7.(课堂动手练习)使用AI快速生成选择/填空/问答/判断题

第四章:让GPT成为你的工作秘书

1.(课堂动手练习)让GPT帮你整理文章数据

2(课堂动手练习)让GPT帮你进行数据处理

3.(课堂动手练习)让GPT帮你进行用户评论分类

4.(课堂动手练习)让GPT帮你优化工作总结

5.(课堂动手练习)使用GPT改进你的产品或服务

6.(课堂动手练习)使用GPT分析不同产品的差异

7.(课堂动手练习)向GPT寻求商业和营销意见

8.(课堂动手练习)让GPT帮你生成特定知识的测试题

9.(课堂动手练习)让GPT帮你写合同

10.(课堂动手练习)让GPT帮你写简历

11.(课堂动手练习)让GPT帮你进行模拟面试

12.(课堂动手练习)让GPT生成数学公式并保存

13.(课堂动手练习)让GPT根据特定数据生成图表

 

 

第五章:AI辅助论文搜索与阅读

1.(课堂动手练习)利用AI进行论文搜索  

2.(课堂动手练习)论文拓展平台使用

3.(课堂动手练习)最好用的AI论文阅读交流神器介绍

4.(课堂动手练习)RAG检索增强生成介绍

5.(课堂动手练习)利用AI进行论文阅读总结交流。

6.(课堂动手练习)最好用的AI论文翻译神器介绍

7.(课堂动手练习)利用AI对论文中的公式讲解

 

第六章:AI辅助写作ABCD模型(通用方法论)

1.(课堂动手练习)【A模式】AI直接写(给定框架或者不给定框架)

2.(课堂动手练习)【B模式】投喂式写作(指定引用内容的写作)

3.(课堂动手练习)【C模式】模仿式写作(指定范文,给出观点,套用格式)

4.(课堂动手练习)【D模式】连接论文数据数据库进行写作(搜索相关论文,参考相关论文内容)

第七章:让AI成为您的论文写作助手

1.(课堂动手练习)利用AI生成论文选题

2.(课堂动手练习)利用AI辅助大纲撰写

3.(课堂动手练习)利用AI辅助写摘要

4.(课堂动手练习)利用AI辅助写前言

5.(课堂动手练习)利用AI辅助写技术方法

6.(课堂动手练习)利用AI辅助描述实验数据

7.(课堂动手练习)利用AI辅助进行数据分析

8.(课堂动手练习)利用AI辅助写结论

9.(课堂动手练习)利用AI进行论文写作翻译

10.(课堂动手练习)利用AI帮你生成完整的文献综述(附带真实参考文献)

11.(课堂动手练习)AI写作过程中自动标注参考文献的2种方法

第八章:AI辅助科研论文优化

1.(课堂动手练习)利用AI辅助中英文论文润色

2.(课堂动手练习)利用AI辅助论文润色并生成表格对比润色效果

3.(课堂动手练习)利用AI进行论文降重的2种方案

4.(课堂动手练习)利用AI提出论文审稿意见和具体修改方案

5.(课堂动手练习)如何判别文章是不是AI生成

6.(课堂动手练习)如何避免AI生成的文章被检测

 

第九章:AI在科研绘图中的应用

1.(课堂动手练习)根据本地数据绘制散点图,折线图,柱状图,饼图等

2.(课堂动手练习)绘制不同特征之间的相关系数图

3.(课堂动手练习)绘制不同数据特征的多变量联合分布图

4.(课堂动手练习)绘制数据缺失值可视化图

5.(课堂动手练习)绘制不同模型算法的结果对比图

6.(课堂动手练习)绘制模型算法的ROC曲线图

7.(课堂动手练习)绘制特征重要性排序图

8.(课堂动手练习)其他各种图像的AI自动绘图方法

第十章:SCI论文解读及写作

1.详细解读几篇经典SCI论文。

ChatGPT应用:将科研呢项目中的数据处理、分析、建模和可视化成果转化为学术论文,并利用ChatGPT优化论文写作流程。

2.数据处理

描述:详述数据预处理、清洗和转换步骤。

ChatGPT应用:生成数据处理部分的文本描述,确保术语准确。

3.建模方法

描述:阐明模型选择、训练过程和参数优化。

ChatGPT应用:帮助撰写模型选择和优化策略的逻辑论述。

4.结果可视化

描述:展示关键图表,如准确率和ROC曲线,并解释其意义。

ChatGPT应用:生成图表的描述和解释,简洁明了。

5.成果讨论

描述:分析模型表现,讨论其在相关领域的应用潜力。

ChatGPT应用:生成对模型结果的深入讨论和潜在应用的描述。

6.论文撰写

ChatGPT应用:辅助撰写论文各部分,包括摘要、引言和结论,提高写作效率。

第十一章:AI在课题申报、论文选题及实验方案设计

1、课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)

2、(课堂动手练习)利用AI分析指定领域的热门研究方向

3、(课堂动手练习)利用AI辅助撰写、润色课题申报书的各部分内容

4、(课堂动手练习)利用AI总结指定论文的局限性与不足,并给出潜在的改进思路与建议

5、(课堂动手练习)利用AI评估指定改进思路的新颖性与已发表的类似工作

6.(课堂动手练习)利用AI进一步细化改进思路,凝练论文的选题与创新点

7、(课堂动手练习)利用AI给出具体的算法步骤,并自动生成算法的Python示例代码框架

8、(课堂动手练习)利用AI设计完整的实验方案与数据分析流程

9、(课堂动手练习)利用AI给出论文Discussion部分的切入点和思路

第十二章:AI的拓展应用

1.(课堂动手练习)利用AI自动创建精美PPT

2.(课堂动手练习)利用AI根据文章内容或自定义大纲创建PPT

3.(课堂动手练习)利用AI快速产出科普短视频

4.(课堂动手练习)利用AI快速制作流程图

5.(课堂动手练习)利用AI快速制作序列图

6.(课堂动手练习)利用AI快速制作思维导图

第十三章:不会写代码也能成为编程高手

1.(课堂动手练习)利用AI实现某一特定功能的程序

2.(课堂动手练习)利用AI对代码进行解释

3.(课堂动手练习)利用AI进行代码纠错及修改

4.(课堂动手练习)利用AI回答代码疑问

5.(课堂动手练习)利用AI帮你优化代码

6.(课堂动手练习)利用AI读取本地数据然后写代码

7.(课堂动手练习)利用AI帮你提供完整项目代码并不断修正代码

8.(课堂动手练习)自动化AI编程助手介绍

第十四章:基于AI完成的机器学习/深度学习项目案例

1.(课堂动手练习)用AI了解科研/项目相关知识

2.(课堂动手练习)用AI优化科研/项目的设计

3.(课堂动手练习)用AI解答科研/项目相关问题

4.(课堂动手练习)用AI读取本地数据(Excel数据或CSV数据等)

5.(课堂动手练习)用AI对科研/项目数据进行深度学习建模程序编写

6.(课堂动手练习)如何分析特征重要性(哪些特征对标签的影响最大)

7.(课堂动手练习)多种常用机器学习算法结果对比

第十五章:GPT-4o功能详解

1.(课堂动手练习)GPT-4o不同情绪的语音功能介绍

2.(课堂动手练习)GPT-4o联网功能介绍

3.(课堂动手练习)GPT-4o图像识别能力详细解析

4.(课堂动手练习)GPT-4o识别统计分析图并生成对应画图的代码

5.(课堂动手练习)GPT-4o识别图片中的表格数据并保存

6.(课堂动手练习)GPT-4o识别图片中的公式并进行编辑

7.(课堂动手练习)利用GPT-4o完成全自动数据分析、绘图、建模

8.(课堂动手练习)利用GPT-4o连接论文数据库

第十六章:AI绘图工具Midjourney应用

1.AI画图原理介绍  

2.文生图和图生图介绍

3.CLIP模型和扩散模型介绍  

4.(课堂动手练习)Midjourney使用介绍

5.(课堂动手练习)Midjourney提高分辨率及图像微调

6.(课堂动手练习)Midjourney参考别人的优秀作品进行绘图

7.(课堂动手练习)Midjourney图生图高级用法

8.(课堂动手练习)Midjourney的参数使用

9.(课堂动手练习)Midjourney科研作图应用

第十七章:AI绘图工具StableDiffusion应用

1.StableDiffusion工具介绍  

2.StableDiffusion环境部署介绍

3.StableDiffusion工作界面介绍

4.(课堂动手练习)使用Lora模型产生写实人物图像

5.(课堂动手练习)图像的局部重绘

6.(课堂动手练习)StableDiffusion的插件系统介绍

7.(课堂动手练习)使用线稿图生成装修和建筑

8.(课堂动手练习)使用线稿图给图片上色

9.(课堂动手练习)产生特定姿态的人物图像

第十八章:GPT-4o科研绘图工具DALL-E3应用

1. (课堂动手练习)DALL-E3模型介绍  

2.(课堂动手练习)DALL-E3与GPT4结合使用  

3.(课堂动手练习)DALL-E3中文提示词的使用

4.(课堂动手练习)DALL-E3根据上下文内容修改图片

5.(课堂动手练习)DALL-E3在图像中生成特定文字

6.(课堂动手练习)DALL-E3绘图结果的不断优化

7.(课堂动手练习)DALL-E3科研作图应用

辅助课程

1.课程总结及技术发展展望。

2.根据学员感兴趣的领域,讲解ChatGPT在该领域的应用方法

3.建立信群答疑群(课后提供终身免费答疑,提供一对一答疑)

4.配备AIGC/GPT/AI绘图/等教材,课后逐步提高能力。






课程三:


培训时间:8月16日、17日、18日  上海现场+直播授课
报名联系:刘老师 13261851751(微信同号)
注:全程有录屏,可以回放,课后提供答疑,可开发票,方便报销。

培训内容如下:(滑动查看更多)


大章节

小章节

第一章:常见人工智能项目应用案例分析

1.基于摄像头的保安巡更系统

2.云种类识别

3.用户评论情感分类

4.甲状腺CT图像分类

5.工业缺陷检测

6.汽车部件安装检测

第二章:Python人工智能在科研领域中的应用介绍

1.人工智能在科研写作中的应用

2.人工智能在科研翻译中的应用

3.人工智能在科研数据分析中的应用

4.人工智能的科研绘图中的应用

5.人工智能的科研模型设计和训练中的应用

6.人工智能技术的各种应用场景

第三章:Python环境介绍

1.python集成环境-Anaconda安装

2.python开发环境-pycharm介绍

3.pytthon开发环境-jupyter配置

4.jupyter基本使用

第四章:python基础学习

1.python的应用场景

2.(课堂动手练习)python环境安装配置

3.(课堂动手练习)print使用

4.(课堂动手练习)运算符和变量

5.(课堂动手练习)循环

6.(课堂动手练习)列表元组字典

7.(课堂动手练习)if条件

8.(课堂动手练习)函数

9.(课堂动手练习)模块

10.(课堂动手练习)类的使用

11.(课堂动手练习)文件读写

12.(课堂动手练习)异常处理

 

 

第五章:科学计算模块Numpy学习

1.(课堂动手练习)numpy的属性

2.(课堂动手练习)创建array

3.(课堂动手练习)numpy的运算

4.(课堂动手练习)随机数生成以及矩阵的运算

5.(课堂动手练习)numpy的索引

 

第六章:绘图工具包matplotlib学习

1.(课堂动手练习)基础用法

2.(课堂动手练习)figure图像

3.(课堂动手练习)设置坐标轴

4.(课堂动手练习)legend图例

5.(课堂动手练习)scatter散点图

第八章:机器学习常用算法(课堂练习中学员自己完成)

1.(课堂动手练习)线性回归算法介绍与使用    

2.(课堂动手练习)Lasso回归算法介绍与使用

3.(课堂动手练习)KNN算法介绍与使用     

4.(课堂动手练习)SVM算法介绍与使用

5.(课堂动手练习)K-means算法介绍与使用  

6.(课堂动手练习)XGBoost算法介绍与使用

7.(课堂动手练习)LightGBM算法介绍与使用

8.(课堂动手练习)所有的机器学习算法使用技巧总结分析

9.(课堂动手练习)用自己的数据完成机器学习算法训练

第九章:机器学习中的数据特征工程

1.特征工程的意义

2.缺失值填充方法

3.数字类型特征处理

4.多值有序特征和多值无序特征处理

5.特征筛选方法

6.数据标准化和归一化处理

 

第十章:机器学习案例在项目中的应用(课堂动手练习)用

1.相关论文内容解读,并分析该项目如何应用于论文写作

2. 项目简介

 - 目标定义:开发一个机器学习模型,用于数据预测。

3. 数据预处理

 - 数据加载:载入数据集,并初步查看数据结构和基本统计信息

 - 数据清洗:识别并处理数据集中的异常值和缺失值。使用适当的方法填充缺失值(例如,均值填充)

 - 特征工程:分析各特征与标签值的关系。选择合适的特征进行模型训练

4. 探索性数据分析

 - 利用Seaborn的pairplot绘制不同特征之间的关系

 - 绘制热力图分析特征之间的相关性

5. 模型构建与训练

 - 选择模型:选择多个分类算法(如K-近邻、逻辑回归、神经网络、决策树、随机森林等)进行比较

6. 模型评估与优化

 - 结果可视化:使用条形图展示不同模型的性能比较

 - 模型解释:使用SHAP值解释模型的预测结果,以了解哪些特征对模型预测结果影响最大

7. 项目总结

 - 评估模型表现:综合评估模型的准确性和可解释性

 - 讨论与改进:基于模型表现,讨论可能的改进方法和实际应用中的潜在挑战

第十一章:机器学习算法在SCI论文中的应用

1.详细解读几篇经典SCI论文,展示机器学习算法的实际应用

2.逐篇论文解读,突出算法的选择理由、应用过程和结果分析

3.研究背景和问题定义:介绍论文所解决的问题和研究背景

4.数据处理和特征工程:讨论数据预处理方法和特征工程步骤

5.算法选择和模型构建过程:解释为何选择该深度学习算法,并描述模型的构建过程

6.模型评估和结果讨论:评估模型性能,讨论实验结果及其意义

第十二章:AI在数据绘图中的应用

1.(课堂动手练习)根据本地数据绘制散点图,折线图,柱状图,饼图等

2.(课堂动手练习)绘制不同特征之间的相关系数图

3.(课堂动手练习)绘制不同数据特征的多变量联合分布图

4.(课堂动手练习)绘制数据缺失值可视化图

5.(课堂动手练习)绘制不同模型算法的结果对比图

6.(课堂动手练习)绘制模型算法的ROC曲线图

7.(课堂动手练习)绘制特征重要性排序图

8.(课堂动手练习)其他各种图像的AI自动绘图方法

第十三章:深度学习算法基础-神经网络

1.单层感知器

2.激活函数,损失函数和梯度下降法

3.BP算法介绍

4.梯度消失问题

5.多种激活函数介绍

6.(课堂动手练习)BP算法解决手写数字识别问题

第十四章:模型算法优化方法

1.(课堂动手练习)Mnist数据集和softmax讲解

2.(课堂动手练习)使用BP神经网络识别图片

3.(课堂动手练习)交叉熵(cross-entropy)讲解和使用

4.(课堂动手练习)欠拟合/正确拟合/过拟合

5.(课堂动手练习)各种优化器Optimizer

6.(课堂动手练习)模型保存和模型载入方法

第十五章:深度学习算法-卷积神经网络CNN应用

1.CNN卷积神经网络介绍

2.卷积的局部感受野,权值共享介绍。

3.卷积的具体计算方式

4.池化层介绍(均值池化、最大池化)

5.LeNET-5卷积网络介绍

6.(课堂动手练习)CNN手写数字识别案例

第十六章:深度学习算法-长短时记忆网络LSTM应用

1.RNN循环神经网络介绍

2.RNN具体计算分析

3.长短时记忆网络LSTM介绍

4.输入门,遗忘门,输出门具体计算分析

5.堆叠LSTM介绍

6.双向LSTM介绍

7.(课堂动手练习)使用LSTM进行基因序列能量预测

第十七章:基于迁移学习的深度学习图像识别项目(课堂练习中学员自己完成)

1.VGG16模型详解

2.ResNet模型详解

3.ConvNeXt模型详解

4.(课堂动手练习)下载训练好的1000分类图像识别模型

5.(课堂动手练习)使用训练好的图像识别模型进行各种图像分类

6.(课堂动手练习)使用迁移学习训练气象图像分类模型

7.(课堂动手练习)训练自己的图像分类数据集

第十八章:深度学习算法在SCI论文中的应用

1.详细解读几篇经典SCI论文,展示深度学习算法的实际应用

2.逐篇论文解读,突出算法的选择理由、应用过程和结果分析

3.研究背景和问题定义:介绍论文所解决的问题和研究背景

4.数据处理和特征工程:讨论数据预处理方法和特征工程步骤

5.算法选择和模型构建过程:解释为何选择该深度学习算法,并描述模型的构建过程

6.模型评估和结果讨论:评估模型性能,讨论实验结果及其意义

第十九章:Faster-RCNN系列模型讲解

1.目标检测项目简介

2.R-CNN模型详解

3.SPPNET模型详解

4.Fast-RCNN模型详解

5.Faster-RCNN模型详解

第二十章:YOLO算法介绍与应用

1.YOLOv1结构及工作流程

2.YOLOv1代价函数讲解以及缺点分析

3.YOLOv2网络结构Darknet-19讲解

4.YOLOv2精度优化-高分辨率和anchor

5.YOLOv2精度优化-维度聚类

6.YOLOv2精度优化-直接位置预测

7.YOLOv2精度优化-细粒度特征和多尺度训练

8.YOLOv3结构讲解

9.YOLOv4算法讲解

10.YOLOv5算法讲解

第二十一章:最新目标检测算法YOLOv10目标检测应用(课堂练习中学员自己完成)

1.YOLOv10检测模型介绍

2.(课堂动手练习)安装YOLOv10模型

3.(课堂动手练习)自行标注要检测的图像样本

4.(课堂动手练习)修改模型的配置文件

5.(课堂动手练习)训练YOLOv10目标检测模型

6.(课堂动手练习)使用训练好的YOLOv10进行图像预测

第二十二章:最新目标分割算法YOLOv10目标分割应用(课堂练习中学员自己完成)

1.YOLOv10分割模型介绍

2.(课堂动手练习)安装YOLOv10模型

3.(课堂动手练习)自行标注要分割的图像样本

4.(课堂动手练习)修改模型的配置文件

5.(课堂动手练习)训练YOLOv10图像分割模型

6.(课堂动手练习)使用训练好的YOLOv10进行图像分割

第二十三章:图像检测和分割算法算法在SCI论文中的应用

1.详细解读几篇经典SCI论文,展示图像检测和分割算法的实际应用

2.逐篇论文解读,突出算法的选择理由、应用过程和结果分析

3.研究背景和问题定义:介绍论文所解决的问题和研究背景

4.数据处理:讨论数据预处理方法

5.算法选择和模型构建过程:解释为何选择该深度学习算法,并描述模型的构建过程

6.模型评估和结果讨论:评估模型性能,讨论实验结果及其意义

第二十四章:自然语言处理任务

1.Transformer模型介绍

2.self-Attention

3.Multi-Head Attention

4.Bert模型介绍

5.MLM和NSP模型任务

6.使用Bert模型进行用户评论分类

第二十五章:大语言模型ChatGPT介绍

1.OpenAI最新模型-GPT4o介绍

2.国内大语言模型文心一言,通义千问,Kimi,智谱清言,星火认知使用介绍

3.ChatGPT辅助论文搜索与阅读

4.ChatGPT成为您的论文写作助手

5.ChatGPT辅助科研论文优化

6.不会写代码也能成为编程高手

辅助课程

1.课程总结及技术发展展望。

2.建立信群答疑群,课后提供答疑。

3.配备AIGC/GPT/AI绘图/人工智能、机器学习与深度学习教材,课后逐步提高能力。



中科软研



科学 高效 保障 专注于科研领域培训

Biomamba 生信基地
本人为在读博士研究生,此公众号旨在分享生信知识及科研经验与体会,欢迎各位同学、老师与专家的批评指正,也欢迎各界人士的合作与交流。
 最新文章