显式动力学数值模拟事项注意

文摘   2024-08-31 09:18   澳大利亚  

点击上方蓝字了解更多计算与STEM领域研究前沿




目录如下:


1. hourglass

2. 时间步长设置

3. 网格大小与精度

4. 求解问题类型

5. 接触刚度

6. 流固耦合

7. 能量计算不合理的常见原因和解决方案


Hourglass


在显式动力学模拟中,hourglass(沙漏现象)指的是在有限元分析中使用一阶八节点单元时,由于计算过程中的自由度冗余,可能会导致不合理的数值解。这种现象表现为单元内出现局部的网格畸变,形成类似沙漏状的形变模式。


Hourglass现象的成因


1. 低阶单元的固有问题:一阶单元由于使用线性插值函数,在应力计算中存在刚性不足的情况。特别是在网格划分较粗糙的情况下,某些自由度可能在数值上没有得到约束,导致应变呈现出非物理的模式。


2. 积分点数量不足:通常使用一个积分点(一阶高斯积分)的八节点立方体单元容易发生hourglass现象。这是因为积分点数目不足导致应力的计算未能充分考虑单元的内部变形。


3. 不平衡的力:在显式动力学中,时间步进法通常会依赖显式积分方法。在这种情况下,不平衡的力可以产生非物理的形变模式。


Hourglass控制技术


为了避免或减少hourglass现象的影响,通常使用以下方法:


1. 增强型单元:使用改进型单元,比如选择更高阶的单元或者采用减少积分点的技术。C3D8R(Reduced Integration, 8-node brick)单元采用额外的控制措施来抑制hourglass现象。


2. Hourglass控制算法:在显式分析中,常用的hourglass控制方法包括粘性控制、刚性控制以及混合控制方法。这些方法通过在单元中引入虚拟的阻尼或刚性来消除不合理的自由度。


3. 细化网格:通过细化网格来减少单元尺寸,使得形变在更小的范围内分布,减小单元内部的自由度冗余,从而减少hourglass现象的发生概率。


4. 积分点的增加:增加积分点数目可以更精确地计算单元内部的应力分布,从而减小hourglass形变。


时间步长设置


在显式动力学模拟中,时间步长的选择至关重要。显式动力学方法通常使用中央差分法进行时间积分,这种方法要求每个时间步长都非常小,以确保数值稳定性和结果的准确性。


时间步长的选择原则


1. 稳定性条件(Courant条件)

   - 显式动力学中的时间步长通常受Courant条件限制,即时间步长必须小于或等于波在单元中传播所需的时间。这个时间步长可以通过以下公式近似计算:



STEM与计算机方法
不定期更新各种前沿的科学技术和方法,最新的学界和工业界的资讯,分享计算机、数学、物理的方法在各个学科中的应用,不定期转发相关的会议内容,链接和开源代码。
 最新文章