南京师范大学WR|地下水源碳激发了青藏高原源头溪流CO2排放潜力

政务   2024-11-13 09:00   湖北  

自:R语言与水文生态环境

(一)基本信息

  • 期刊:Water Research

  • 中科院分区:1区环境科学与生态学

  • 影响因子(IF):11.4

(二)作者信息
  • 作者:You Wu
  • 通讯作者:Qihao Jiang and Changchun Huang
  • 第一作者单位:Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China
  • 原文连接:https://doi.org/10.1016/j.jhazmat.2024.134571
(三)文章亮点
  • (1)地下水来源的碳酸盐风化和HUP - H降解共同激发了青藏高原源流CO2排放潜力;

  • (2)与风化区地下水引起的HUP - H降解相比,泉水中pCO2的增加主要是由碳酸盐风化引起的;
  • (3)据估计,在整个青藏高原的总径流中,地下水来源的DIC的流入达到9.59 ± 0.34 tg C / y。
(四)摘要

   源头溪流的CO2排放是内陆水体温室气体通量的重要组成部分。然而,作为亚洲水塔(青藏高原, QTP)中溪流的主要贡献者,地下水对CO2水平的影响尚不清楚。本研究利用稳定同位素分析和傅里叶变换离子回旋共振质谱( FT-ICR MS),证明了地下水来源的溶解无机碳( DIC )显著增强了青藏高原水落溪流中的CO2过饱和度。具体来说,指示CO2排放潜力的CO2分压( p CO2 )在地下水丰富的站点增加了3倍多,达到1,615 ± 495μatm,比整个青藏高原的平均值( 843μatm )高出近1倍。地下水来源的碳酸盐风化对pCO2的增加有76.6 %的显著影响,而具有高O / C的高度不饱和多酚类物质的降解贡献了15.8 %。在整个青藏高原的总径流中,地下水来源的DIC的估计流入量可以达到9.59 ± 0.34 Tg C / y,这突出了显著的CO2来源。本研究提出了风化地区地下水来源的DIC对河流CO2排放影响的新发现,拓展了我们对青藏高原河流CO2排放的认识。

(五)图文赏析

Fig. 1. (a) Location of the Qinghai-Tibet Plateau and Daocheng county. (b) Sampling sites in the Shuiluo stream during the wet and dry seasons in 2022 and 2023.

Fig. 2. Spatial distributions of (a) DIC concentrations and (b) pCO2 along the stream during the wet and dry seasons in 2022 and 2023. Hollow and solid dots represent data for the wet and dry seasons, respectively. Circle and diamond represent data for 2022 and 2023, respectively. Pink shadow contains groundwater rich sites.

Fig. 3. (a) δ18O and δ2H values in each stream sample in both seasons. Blue, orange, and green rectangles represent groundwater, precipitation, and glacier meltwater endmembers, respectively. (b) Spatial distribution of GW(%) along the stream during the wet and dry seasons in 2022 and 2023. Hollow and solid dots represent data for the wet and dry seasons, respectively. Circle and diamond represent data for 2022 and 2023, respectively. Pink shadow contains groundwater rich sites.

Fig. 4. Spatial distributions of (a) HUP-H and (b) HUP-L along the stream. Hollow and solid dots represent data for the wet and dry seasons, respectively. Pink shadow contains groundwater-rich sites.

Fig. 6. Linear regression between pCO2 and GW(%). Orange line represents the regression result. Hollow and solid dots represent data for the wet and dry seasons, respectively.

Fig. 5. Spatial distributions of (a) Ca2+, (b) Mg2+, (c) Na+, (d) K+, (e) SO4 2- and (f) Cl- along the stream in the wet and dry seasons in 2022 and 2023. Hollow and solid dots represent data for the wet and dry seasons, respectively. Circle and diamond represent data for 2022 and 2023, respectively. Pink shadow contains groundwater rich sites.

Fig. 7. Linear regression between [Ca2++ Mg2+] and (a) GW(%), (b) pCO2. Orange solid line represents the linear regression result. Hollow and solid dots represent data for the wet and dry seasons, respectively

Fig. 8. Linear regression between HUP-H(%) and (a) GW(%), (b) pCO2. Orange solid line represents the linear regression result. Hollow and solid dots represent data for the wet and dry seasons, respectively

Fig. 9. Box-plots of pCO2 in groundwater-rich sites (this study) and streams in the source regions of the Yangtze River (Song et al., 2020; Xu et al., 2024),Yellow River (Xu et al., 2024) and Yarlung Tsangpo River (Xu et al., 2024) on the Qinghai-Tibet Plateau. *represents significance levels, with * indicating p< 0.05, ** indicating p < 0.01 and *** indicating p < 0.001

(转载仅供交流学习使用,侵权必删)

投稿、转载、合作、申请入群可在后台留言(备注:姓名+微信号)或发邮件至sthjkx1@163.com

【点击下方超链接阅读16个栏目推文】 

1.【直播】9.【院士】
2.【视频10.【综述】
3.【健康&毒理11.【写作】
4.【12.【Nature】
5.【13.【Science
6.【14.【WR
7.【固废15.【EST
8.【生态】16.【JHM


生态环境科学
最新学术成果与讯息
 最新文章