重磅!!!四川大学知名学者的顶级论文图片被质疑,涉及重复,尚待回复!!!

学术   教育   2024-11-06 09:50   浙江  


Res Microbiol




2019 Jan-Feb;170(1):43-52.

 doi: 10.1016/j.resmic.2018.09.002. Epub 2018 Oct 4.

Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study

Bo Zeng 1Zhiwen Lai 2Lijin Sun 3Zhongbao Zhang 1Jianhua Yang 4Zaixin Li 1Jie Lin 5Zhi Zhang 6

Affiliations expand

  • PMID: 30292647

  •  

  • DOI: 10.1016/j.resmic.2018.09.002

Free article

Abstract

Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder that affects 9-21% of reproductive-aged women. Affected women frequently display obesity, insulin resistance, and inflammation. Altered gut microbial community has been reported in PCOS and obese PCOS patients. However, the profile of the gut microbial community in insulin resistant PCOS (IR-PCOS) patients still remains unknown. In this study, next-generation sequencing based on the 16S rRNA gene was used to compare the gut microbial composition of women with IR-PCOS (n = 9, PCOS with insulin resistance), NIR-PCOS (n = 8, PCOS alone) and healthy controls (n = 8, HC). We assessed that the composition of the gut microbial communities in NIR-PCOS and IR-PCOS patients were significantly altered. The family Bacteroidaceae was prolific in the NIR-PCOS group and reached its highest level in the IR-PCOS group, while the Prevotellaceae dramatically decreased in PCOS patients, especially in the IR-PCOS group. Subsequent correlation analysis revealed that the increased clinical parameter levels, including insulin resistance, sex-hormones and inflammation, were positively associated with the abundance of Bacteroidaceae, but negatively associated with that of Prevotellaceae. In addition, IR-PCOS patients also displayed a significant difference in their amounts of Ruminococcaceae and Lachnospiraceae when compared to the NIR-PCOS group. Moreover, the functional prediction from PICRUSt revealed that 73 pathways are significantly changed in the gut microbial communities of PCOS patients. Specifically, 21 metabolism-associated pathways, including the steroid hormone biosynthesis and lipopolysaccharide biosynthesis pathways, are obviously changed in IR-PCOS when compared to NIR-PCOS and HC groups. Taking this into consideration, our present study suggests that the dysbiosis of gut microbial communities occurred most notably in IR-PCOS patients, and the difference in gut dysbiosis profile between the IR-PCOS and NIR-PCOS should be considered in clinical treatment for PCOS patients and future drugs development.

Keywords: Gut microbial community; Insulin resistance; Polycystic ovary syndrome.

参考连接:

https://pubpeer.com/publications/116E0CEB90DCED222D3908CC696B2E

本文为【丰倍SCI】公众号原创文章

未经授权禁止转载!

转载请勿更改原文内容及格式!

如有转载需求或合作事宜

可添加下方客服微信

或后台私信小编

三重保障:Al查重+机械物理查重+人工查重

官网:www.fengbei-ai.com


客服微信:sindy01010101

丰倍查重
专注科研图片查重二十年,专业、高效、品质。您的信任与支持是我们前进最大的动力!
 最新文章