本期阅读
文章信息
论文“A digital twin based framework for detection, diagnosis, and improvement of throughput bottlenecks”于2023年2月发表于《Journal of Manufacturing Systems》期刊,这篇文章由Mahesh Kumbhar, Amos H.C. Ng, Sunith Bandaru共同完成。
DOI:https://doi.org/10.1016/j.jmsy.2022.11.016
论文链接:
https://www.sciencedirect.com/science/article/pii/S0278612522002151
引用本文:
Mahesh Kumbhar, Amos H.C. Ng, Sunith Bandaru, A digital twin based framework for detection, diagnosis, and improvement of throughput bottlenecks,Journal of Manufacturing Systems,Volume 66,2023,Pages 92-106, ISSN 0278-6125, https://doi.org/10.1016/j.jmsy.2022.11.016.
文章阅读
A digital twin based framework for detection, diagnosis, and improvement of throughput bottlenecks
Mahesh Kumbhar a, Amos H.C. Ng a b, Sunith Bandaru a
a Division of Intelligent Production Systems, School of Engineering Science, University of Skövde, 541 28, Skövde, Sweden
b Division of Industrial Engineering and Management, Department of Civil and Industrial Engineering, Uppsala University, 752 36, Uppsala, Sweden
Abstract
Digitalization through Industry 4.0 technologies is one of the essential steps for the complete collaboration, communication, and integration of heterogeneous resources in a manufacturing organization towards improving manufacturing performance. One of the ways is to measure the effective utilization of critical resources, also known as bottlenecks. Finding such critical resources in a manufacturing system has been a significant focus of manufacturing research for several decades. However, finding a bottleneck in a complex manufacturing system is difficult due to the interdependencies and interactions of many resources. In this work, a digital twin framework is developed to detect, diagnose, and improve bottleneck resources using utilization-based bottleneck analysis, process mining, and diagnostic analytics. Unlike existing bottleneck detection methods, this novel approach is capable of directly utilizing enterprise data from multiple levels, namely production planning, process execution, and asset monitoring, to generate event-log which can be fed into a digital twin. This enables not only the detection and diagnosis of bottleneck resources, but also validation of various what-if improvement scenarios. The digital twin itself is generated through process mining techniques, which can extract the main process map from a complex system. The results show that the utilization can detect both sole and shifting bottlenecks in a complex manufacturing system. Diagnosing and managing bottleneck resources through the proposed approach yielded a minimum throughput improvement of 10% in a real factory setting. The concept of a custom digital twin for a specific context and goal opens many new possibilities for studying the strong interaction of multi-source data and decision-making in a manufacturing system. This methodology also has the potential to be exploited for multi-objective optimization of bottleneck resources.
Keynote
Supply chain resilience, Intelligent digital twin, Data analytics, Stress-test, Ripple effect, anyLogistix
摘要
通过工业4.0技术实现数字化,是制造型企业全面协作、沟通和整合异构资源以提高制造绩效的关键步骤之一。其中,衡量关键资源(亦称瓶颈)的有效利用率是提升制造绩效的重要途径。几十年来,制造业研究一直高度重视在制造系统中识别此类关键资源。然而,由于众多资源之间的相互依赖和交互,在复杂的制造系统中识别瓶颈颇具难度。本研究开发了一种数字孪生框架,利用基于利用率的瓶颈分析、过程挖掘和诊断分析来检测、诊断和改进瓶颈资源。与现有的瓶颈检测方法不同,这种新方法能够直接从生产规划、过程执行和资产监控等多个层级直接利用企业数据,生成可输入数字孪生的事件日志。这不仅能够检测和诊断瓶颈资源,还能验证各种假设的改进方案。数字孪生本身是通过过程挖掘技术生成的,该技术可以从复杂系统中提取主要过程图。结果表明,利用率检测能够识别复杂制造系统中的单一瓶颈和转移瓶颈。通过所提方法诊断和管理瓶颈资源,在实际工厂环境中至少实现了10%的吞吐量提升。针对特定情境和目标构建定制数字孪生的概念,为研究制造系统中多源数据与决策制定的强烈交互作用开辟了诸多新可能性。该方法还具有用于瓶颈资源多目标优化的潜力。
关键词
数字孪生、瓶颈检测、过程挖掘、工厂物理、利用率、仿真、工业4.0
Fig. 2. Digital twin consisting of observable manufacturing system, data collection and device control entity, core entity and user entity
Fig. 3. FACTS Analyzer model for serial flow line with product mix.
研究背景
数字化转型:数字化转型是制造业组织实现资源协作、沟通和集成的关键步骤,以提高制造性能。
瓶颈检测:在制造系统中找到关键资源(瓶颈)是制造研究的重要焦点,但复杂制造系统中瓶颈的发现由于资源的相互依赖和互动而变得困难。
数字孪生框架:本文提出了一种数字孪生框架,用于检测、诊断和改进瓶颈资源,通过基于利用率的瓶颈分析、过程挖掘和诊断分析。
研究方法
数字孪生框架:该框架包括数据收集、功能和用户交互,用于检测单一和变化的瓶颈,以提供吞吐量改进建议。
基于利用率的瓶颈检测:通过计算资源的利用率来检测瓶颈,定义为资源的输入率与容量之比。
过程挖掘:利用过程挖掘技术从复杂系统中提取主要流程图,生成事件日志,用于数字孪生的生成。
诊断分析:通过监测单个资源使用资产监控来诊断资源,确定瓶颈原因,并提出吞吐量改进措施。
实验设计
数据收集和设备控制实体:包括数据收集功能元素、数据预处理功能元素、控制功能元素和执行功能元素。
核心实体:包括事件日志、数字孪生、资产监控、过程挖掘、模拟和分析。
用户实体:用户通过用户界面分析数字孪生的结果,进行描述性分析、诊断分析和预测分析。
结果分析
示例模拟:使用假设的串行产品混合模拟模型验证了方法论,包括五台机器、四个缓冲区和两个来源。
实际制造设施:在瑞典哥德堡的一家全自动制造工厂进行了测试和验证,该工厂生产不同组装的轴承。
瓶颈检测与诊断:通过分析活动利用率,使用基于利用率的方法检测到瓶颈,并通过SCADA数据进行诊断。
吞吐量改进:通过非参数单尾Wilcoxon符号秩检验比较改进前后的吞吐量差异,发现统计学上有显著差异。
总体结论
研究贡献:本文提出了一种基于数字孪生的瓶颈检测和吞吐量改进框架,该框架通过过程挖掘自动生成事件日志,无需手动建模复杂工业系统。
行业实践意义:该框架有助于理解过程和数据科学及其相互作用,对于组织的长期可持续性目标具有重要意义。
关注公众号,后台回复“论文72”即可下载原文
相关阅读
本公众号致力于分享高质量的数字孪生与数字工程相关学术研究与知识资讯,以促进学术交流与知识传播。推送的论文内容主要来源于公开出版或在线发布的学术资源,版权归原作者所有,仅供学术交流,未经授权不得商用。如有侵权,请联系删除。
作者如有优秀论文需推荐,请在公众号后台留言与我们取得联系,我们将审核后择优推送。感谢您的持续关注与支持!