比利时KU Leuven大学数字孪生博士生招生 - 中国留学基金委项目

文摘   2024-11-07 17:01   河北  

点击蓝字 关注我们

DIGITAL TWIN



Opportunity for a PhD via 

the CSC-KU Leuven scholarship programme



(文末可下载简章)


The CSC-KU Leuven scholarship programme


Every year the China Scholarship Council (CSC) opens a call for Chinese candidates to apply for a PhD scholarship. Candidates need a research topic and supervisor in order to apply. Candidates can write their own proposal and find a supervisor; or apply within the CSC-KU Leuven scholarship programme. In the CSC-KU Leuven programme, KU Leuven professors in Science, Engineering & Technology formulate research topics to which candidates can apply. The selected candidates will then apply to CSC in February/March. CSC and KU Leuven have agreed to fund up to 50 PhD scholarship positions in Science and Technology to outstanding Chinese applicants. Read more about this scholarship programme on this CSC website (https://www.csc.edu.cn/). 


Candidates should be citizens of the People’s Republic of China at the time of application. Overseas Chinese students may be eligible for application subject to CSC policy at the time.


[2025-23] 

Digital Twins for Circular Economy: Data-Driven Modeling and Production Control for Smart De- and Re-Manufacturing Systems


Keywords: 

Industrial Engineering, Process Mining, Data Mining, Discrete Event Simulation, Industry 4.0, Smart Manufacturing.


Link to the Programme: 

https://set.kuleuven.be/phd/applicants/csc-kuleuven#23


Supervisor: 

Prof. Giovanni Lugaresi


Summary: 

Recently, the de- and re-manufacturing industry has begun to play a crucial role in sustainable resource management, in the development of circular economy, and for the reduction of the environmental impact of industrial systems. However, optimizing these new production paradigms remains a complex challenge due to their intricate processes and varying demands. Indeed, de- and re-manufacturing systems involve workflows with numerous steps, resources, and dependencies, together with a highly unpredictable product variety in input. Traditional production planning, control, and optimization methods are often inadequate in managing the complexity and dynamism of de- and re-manufacturing systems. One of the main reasons is the rapid obsolescence of digital models, together with their low adaptability. There is a pressing need for more data-driven, adaptive, and automated approaches to model generation and process optimization for achieving smart manufacturing systems in the circular economy framework. This research introduces a novel approach using process mining techniques for automated data-driven model generation in de- and re-manufacturing systems.


Research Activities:

  • Automated extraction and analysis of production system data: collecting and pre-processing data from various sources within de- and re-manufacturing systems. If needed, synthetic datasets can be generated exploiting validated simulation models.

  • Process discovery and system modeling: applying process mining techniques to automatically discover, and model the material flows and main behavior of the systems.

  • Performance analysis: evaluating the efficiency and productivity levels of current processes through data-driven analysis.

  • Simulation and optimization: developing models for simulation and optimization of de- and re-manufacturing processes. Prediction of future scenario-based system performance exploiting simulation experiments.

  • Multi-disciplinary aspects: applying techniques from other fields (e.g., artificial intelligence, machine learning, natural language processing) to enrich model generation techniques.


This research will have a concrete impact on the industry's sustainability goals, economic viability, and competitiveness in the global market.


报名截止期限: 

31 December 2024


报名链接: 

https://set.kuleuven.be/phd/applicants/application

Make sure to fill in the application form before the deadline. Take into account that you can only pre-apply to ONE topic (or to several topics with the same supervisor).


联系方式:

TEL. + 32 16326822; 

MOBILE: + 393479604232

Email: giovanni.lugaresi@kuleuven.be  https://www.kuleuven.be/wieiswie/en/person/00163811


关注公众号,后台回复“ku”可下载简章



相关阅读

 【意-中-美同时举行,2600余人参与】DigiTwin 2024第四届数字孪生国际会议圆满落幕!

  数字孪生自动生成方法

  英国谢菲尔德大学团队:时间演化数字孪生及其在工程动力学中的应用

  武汉科技大学夏绪辉教授团队:基于知识图谱的再制造设备资源建模方法

  东北大学孙杰教授团队:数字孪生在工业过程控制中的应用:以带钢热轧为例

 【先睹为快】李培根:AI应用对工程技术认知的启示

 米兰理工大学:土木工程结构的数字孪生体系框架

 Nature子刊:概率图模型使能的大规模预测性数字孪生

 密歇根大学:基于数字孪生和区块链的建筑项目可追溯信息共享

 弗吉尼亚理工大学:人体运动数据增强数字孪生-基于激光雷达的跟踪方法比较

 Siemens Gamesa:协作机器人数字孪生:人机交互的案例研究

 本田研究所:基于数字孪生技术与弱监督学习的现实世界异常检测研究

 瑞典隆德大学:基于数字孪生的工业自动化与控制系统安全架构

 南航郭宇教授团队:基于数字孪生的离散制造车间生产进度预测研究

 英国卡迪夫大学刘滢教授团队:面向工业5.0的人机交互:以人为本的智能制造

 北航陶飞教授团队:数字试验测试验证:理论、关键技术及应用探索丨JME封面文章

 西南交大丁国富教授团队:数字孪生应用中物理模型与虚拟模型之间连接的建模与实现



投稿邀请及版权

本公众号致力于分享高质量的数字孪生与数字工程相关学术研究与知识资讯,以促进学术交流与知识传播。推送的论文内容主要来源于公开出版或在线发布的学术资源,版权归原作者所有,仅供学术交流,未经授权不得商用。如有侵权,请联系删除。


作者如有优秀论文需推荐,请在公众号后台留言与我们取得联系,我们将审核后择优推送。感谢您的持续关注与支持!


数字孪生DigitalTwin
聚焦数字孪生与数字工程研究,依托Digital Twin和 Digital Engineering期刊及DigiTwin国际会议和国内会议,分享最新动态、成果与行业进展,助力产业升级。本公众号由北航陶飞教授发起,为研究者与从业者提供参考。
 最新文章