什么是算力
随着信息技术的不断发展,《中国算力白皮书(2022)》中将算力明确定义为数据中心的服务器通过对数据进行处理后实现结果输出的一种能力。当前行业中讨论的算力,狭义上可理解为CPU、GPU等芯片的计算能力,广义上可理解为芯片技术的计算能力,内存、硬盘等存储技术的存力,以及操作系统、数据库等软件技术的算法的三者集合。
算力的分类
随着数字经济时代的到来,算力发展迎来高潮,广泛应用于各个领域,其中包括但不限于日常消费领域、人工智能领域、半导体技术领域。不同应用场景对算力的需求各异,需要不同类型的算力支撑。目前算力主要分为通用算力、智能算力和超算算力。未来还会出现比传统计算更高效、更快速的新一代算力,例如量子算力等。
通用算力
通用算力主要以CPU为代表,即CPU芯片执行计算任务时所表现出的计算能力。不同架构的CPU计算能力不同,因为CPU算力受核心数量、主频、缓存大小等多种因素影响。目前可以根据DMIPS指标来衡量CPU性能。该指标表示CPU每秒能执行多少百万条Dhrystone指令。
通用算力计算量小,但能够提供高效、灵活、通用的计算能力。因为CPU的架构属于少量的高性能核心结构,即核心数量少,但核心频率高,更加擅长处理复杂的逻辑判断和串行计算的单线程任务,如操作系统的管理、应用程序的执行以及各类后台服务等。而这样的设计在面对大规模并行计算任务时则显得力不从心。
智能算力
GPU(Graphics Processing Unit,图形处理器):GPU在设计之初用于图形渲染,即同时处理大量简单的计算任务。不同于CPU的少量高性能核心架构,GPU拥有大量的核心数但较小的控制单元和缓存,能够完成高度并行的计算任务。GPU主要应用在机器学习的训练阶段,因为机器学习的操作并不依赖于复杂指令,而是大规模的并行计算。
FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列):FPGA是在PAL、GAL 等可编程器件的基础上进一步发展的产物。FPGA是半定制集成电路,具有可重配置的逻辑结构。其内部的电路不是硬刻蚀的,而是可以通过HDL(硬件描述语言)编程来重新配置。这种可编程灵活性使其可以完成人工神经网络的特定计算模式,轻松升级硬件以适应AI场景中新的应用需求。除此以外,FPGA的每个组件功能在重新配置阶段都可以定制,因此在运行时无需指令,可显著降低功耗并提高整体性能。
ASIC(Application-Specific Integrated Circuit,应用特定集成电路):ASIC是专为满足特定需求而设计的全定制集成电路芯片。ASIC的优势在于其能够针对特定任务进行深度优化,从而实现更高的性能和更低的功耗。一旦量产,其单位成本会显著降低,尤其适合于大规模生产和应用。然而,ASIC设计周期长、成本高,一旦设计完成,很难进行修改或升级以适应新的应用需求。因此,在选择使用ASIC还是FPGA时,需要根据具体的应用场景和需求进行权衡。对于需要高性能、低功耗且应用场景相对固定的系统,ASIC可能是更好的选择;而对于需要快速适应新技术和市场需求变化的应用场景,FPGA则更具优势。
超算算力
安全系统:由防火墙、负载均衡、堡垒机、抗DDoS、日志审计、漏洞扫描、DNS服务器等设备组成。
新一代算力
目前阿里巴巴、Google、Honeywell、IBM 、IonQ 和 Xanadu 等少数几家公司都运营着量子计算机,但仍存在退相干、噪声与误差、可扩展性等问题,处于硬件开发的早期阶段。根据专家预测,想要进入量子计算机真正有用的高保真时代,还得需要几十年。
数据中心算力组成
数据中心的计算能力主要依赖于服务器。目前CPU类型的服务器几乎部署在所有的数据中心中,而高性能算力GPU等更多的使用在AI应用场景中,小规模部署于部分数据中心中。然而随着机器学习、人工智能、无人驾驶、工业仿真等新兴技术领域的崛起,传统数据中心遭遇通用CPU在处理海量计算、 海量数据时越来越多的性能瓶颈。在数据中心加快步伐部署48核以及64核心等更高核心CPU来应对激增的算力需求的同时,为了应对计算多元化的需求,越来越多的场景开始引入加速芯片,如前文提到的GPU、 FPGA、 ASIC 等。这些加速硬件承担了大部分的新算力需求。
然而实际上的数据中心是一个汇集大量服务器、存储设备及网络设备的基础设施,数据中心算力是服务器、存储及网络设备合力作用的结果,计算、存储及网络传输能力相互协同才能促使数据中心算力水平的提升。单独讨论服务器的算力水平并不能反映数据中心的实际算力水平。
总之,数据中心是人工智能、物联网、区块链等应用服务的重要载体。数据中心算力水平的提升将会在很大程度上推动全社会总体算力供给,满足各行业数字化转型过程中的算力需求。
欢迎大家添加CIO时代“小希”,
加入“智算交流群”,
后续将有更多精彩算力内容活动及礼品邀您互动!
小 希:15701060895
免责声明:本文系网络转载,版权归原作者所有。但因转载众多,或无法确认真正原始作者,故仅标明转载来源,如涉及作品版权问题,请与我们联系,我们将在第一时间协商版权问题或删除内容!内容为作者个人观点,并不代表本公众号赞同其观点和对其真实性负责。
·END·