基于Django框架搭建的机器学习在线平台源代码+数据库,实现KNN、ID3、SVM、朴素贝叶斯、BP神经网络等算法及流程管理

科技   科技   2023-09-05 16:05   云南  

结果展示(Kmeans):


完整代码下载地址

https://download.csdn.net/download/shiyunzhe2021/88282609

python机器学习之 K-邻近算法

@简单的理解:[ 采用测量不同特征值之间的距离方法进行分类 ]

  • 优点 :精度高、对异常值不敏感、无数据输入假定

  • 缺点 :计算复杂度高,空间复杂度高;

  • 适应数据范围 :数值型、标称型;



文章目录

  • 结果展示(Kmeans):

  • python机器学习之 K-邻近算法

    • kNN简介

      • k-近邻算法的一般流程

        • python导入数据

        • python处理数据

        • 处理步骤

  • 决策树

    • @[toc]

      • 计算给定数据集的信息熵

      • 划分数据集

      • 构建递归决策树

        • 结果输出

        • 结果分析


kNN简介

kNN 原理 :存在一个样本数据集合,也称作训练集或者样本集,并且样本集中每个数据都存在标签,即样本集实际上是 每条数据所属分类对应关系
核心思想 :若输入的数据没有标签,则新数据的每个特征与样本集中数据对应的特征进行比较,该算法提取样本集中特征最相似数据(最近邻)的分类标签。
k :选自最相似的k个数据,通常是不大于20的整数,最后选择这k个数据中出现次数最多的分类,作为新数据的分类。

k-近邻算法的一般流程

sequenceDiagram

1.收集数据:可以使用任何方法。
2.准备数据:距离计算所需的数值,最好是结构化的数据格式。
3.分析数据:可以使用任何方法。
4.训练算法:此不走不适用于k-近邻算法。
5.测试算法:计算错误率。
6.使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类之行后续的处理。

###example1

python导入数据

from numpy import *import operator
def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group,labels

python处理数据

#计算已知类别数据集中的点与当前点之间的距离(欧式距离)
#按照距离递增次序排序
#选取与当前点距离最小的K个点
#确定前K个点所在类别的出现频率
#返回前k个点出现频率最高的类别最为当前点的预测分类
#inX输入向量,训练集dataSet,标签向量labels,k表示用于选择最近邻的数目
def  clissfy0(inX,dataSet,labels,k):  dataSetSize = dataSet.shape[0]  diffMat = tile(inX,(dataSetSize,1)) - dataSet  sqDiffMat = diffMat ** 0.5  sqDistances = sqDiffMat.sum(axis=1)  distances = sqDistances ** 0.5  sortedDistIndicies = distances.argsort()  classCount = {}  for i in range(k):    voteLabel = labels[sortedDistIndicies[i]]    classCount[voteLabel] = classCount.get(voteLabel,0) + 1  sortedClassCount = sorted(classCount.iteritems(),    key = operator.itemgetter(1),reverse = True)  return sortedClassCount[0][0]

####python数据测试

import kNNfrom numpy import *
dataSet,labels = createDataSet()testX = array([1.2,1.1])k = 3outputLabelX = classify0(testX,dataSet,labels,k)testY = array([0.1,0.3])outputLabelY = classify0(testY,dataSet,labels,k)
print('input is :',testX,'output class is :',outputLabelX)print('input is :',testY,'output class is :',outputLabelY)

####python结果输出

('input is :', array([ 1.2,  1.1]), 'output class is :', 'A')('input is :', array([ 0.1,  0.3]), 'output class is :', 'B')

###example2使用k-近邻算法改进约会网站的配对效果

处理步骤

1.收集数据:提供文本文件
2.准备数据:使用python解析文本文件
3.分析数据:使用matplotlib画二维扩散图
4.训练算法:此步骤不适用与k-近邻算法
5.测试算法:使用提供的部份数据作为测试样本
6:使用算法:输入一些特征数据以判断对方是否为自己喜欢的类型

####python 整体实现

#coding:utf-8from numpy import *import operatorfrom kNN import classify0import matplotlib.pyplot as plt
def file2matrmix(filename): fr = open(filename) arrayLines = fr.readlines() numberOfLines = len(arrayLines) returnMat = zeros((numberOfLines,3)) classLabelVector = [] index = 0 for line in arrayLines: line = line.strip() listFromLine = line.split('\t') returnMat[index,:] = listFromLine[0:3] classLabelVector.append(int(listFromLine[-1])) index +=1
return returnMat,classLabelVector
def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals,(m,1)) normDataSet = normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals
def datingClassTest(): hoRatio = 0.10 datingDataMat,datingLabels = file2matrmix('datingTestSet2.txt') normMat,ranges,minVals = autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m * hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) print('the classifier came back with: %d, the real answer is: %d' %(classifierResult,datingLabels[i])) if (classifierResult != datingLabels[i]): errorCount += 1.0 print('the total error rate is: %f' %(errorCount / float(numTestVecs)))
def classifyPerson(): resultList = ['not at all','in small doses','in large doses'] percentTats = float(raw_input('percentage of time spent playing video games?')) ffMiles = float(raw_input('frequent flier miles earned per year?')) iceCream = float(raw_input('liters of ice cream consumed per year?')) datingDataMat,datingLabels = file2matrmix('datingTestSet2.txt') normMat,ranges,minVals =autoNorm(datingDataMat) inArr = array([ffMiles,percentTats,iceCream]) classifierResult = classify0((inArr - minVals) / ranges,normMat,datingLabels,3) print('you will probably like this person:',resultList[classifierResult - 1])
datingDataMat,datingLabels = file2matrmix('datingTestSet2.txt')classifyPerson()fig = plt.figure()ax = fig.add_subplot(111)ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0 * array(datingLabels),15.0 * array(datingLabels))plt.show()

###K-最近邻算法总结

k近邻算法是最简单有效的分类算法,必须全部保存全部数据集,如果训练数据集很大,必须使用大量的存储空间,同时由于必须对数据集中的每个数据计算距离值,实际使用可能非常耗时。
k近邻算法无法给出任何数据的基础结构信息,我们无法知晓平均实例样本和典型实例样本具有神秘特征。

决策树

###决策树简介

决策树 流程图正方形代表判断模块,椭圆形代表终止模块,从判断模块引出的左右箭头称作分支,它可以到达另一个判断模块活着终止模块。
决策树 [优点]:计算复杂度不高,输出结果易于理解,对于中间值的缺失不敏感,可以处理不相关特征数据。
决策树[缺点]:可能会产生过度匹配的问题。
决策树[适用数据类型]:数值型和标称型。


###决策树的一般流程

(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们需要检验图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:使用于任何监督学习算法。

###信息增益

划分数据集的最大原则:将无序的数据集变的有序。
判断数据集的有序程度:信息增益(熵),计算每个特征值划分数据集后获得的信息增益,获得信息增益最高的特征就是最好的选择。
信息增益[公式]:
H=i=1np(xi)log2p(xi)
其中n是分类的数目。

###python决策树

计算给定数据集的信息熵


from math import log
def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key]) / numEntries shannonEnt -= prob * log(prob,2)
return shannonEnt
def createDataSet(): dataSet = [[1,1,'yes'], [1,1,'yes'], [1,0,'no'], [0,1,'no'], [0,1,'no'],] labels = ['no surfacing','flippers']
return dataSet,labels
myDat,labels = createDataSet()print(myDat)print(labels)shannonEnt = calcShannonEnt(myDat)print(shannonEnt)
划分数据集import dtreedef splitDataset(dataSet,axis,value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec)
return retDataSet
myData,labels = dtree.createDataSet()print(myData)retDataSet = splitDataset(myData,0,1)print(retDataSet)retDataSet = splitDataset(myData,0,0)print(retDataSet)
####选择最好的数据划分方式def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 baseEntropy = dtree.calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataset(dataSet,i,value) prob = len(subDataSet)/float(len(dataSet)) newEntropy += prob * dtree.calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if(infoGain > bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature
myData,labels = dtree.createDataSet()print('myData:',myData)bestFeature = chooseBestFeatureToSplit(myData)print('bestFeature:',bestFeature)

#####结果输出

('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])('bestFeature:', 0)

#####结果分析

运行结果表明第0个特征是最好用于划分数据集的特征,即数据集的的第一个参数,比如在该数据集中以第一个参数特征划分数据时,第一个分组中有3个,其中有一个被划分为no,第二个分组中全部属于no;当以第二个参数分组时,第一个分组中2个为yes,2个为no,第二个分类中只有一个no类。

###递归构建决策树

工作原理:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于2个,因此可能存在大于2个分支的数据集划分,在第一次划分后,数据将被传向树分支的下一个节点,在这个节点上我们可以再次划分数据。
递归条件:程序遍历完所有划分数据集的属性,或者没个分支下的所有实例都具有相同的分类。

构建递归决策树


import dtreeimport operatordef majorityCnt(classList):    classCount = {}    for vote in classList:        if vote not in classCount.keys():            classCount[vote] = 0        classCount[vote] +=1
sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse = True) return sortedClassCount[0][0]
def createTree(dataSet,labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): return classList[0] if len(dataSet[0]) == 1: return majorityCnt(classlist) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel:{}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] myTree[bestFeatLabel][value] = createTree(splitDataset(dataSet,bestFeat,value),subLabels)
return myTree

myData,labels = dtree.createDataSet()print('myData:',myData)myTree = createTree(myData,labels)print('myTree:',myTree)

结果输出

('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])('myTree:', {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}})
结果分析
myTree 包含了树结构信息的前套字典,第一个关键字no surfacing是第一个划分数据集的特征名称,值为另一个数据字典,第二个关键字是no surfacing特征划分的数据集,是no surfacing的字节点,如果值是类标签,那么该节点为叶子节点,如果值是另一个数据字典,那么该节点是个判断节点,如此递归。

###测试算法:使用决策树执行分类
####使用决策树的分类函数


import treeplotterimport dtreedef classify(inputTree,featLabels,testVec):    firstStr = inputTree.keys()[0]    secondDict = inputTree[firstStr]    featIndex = featLabels.index(firstStr)    for key in secondDict.keys():        if testVec[featIndex] == key:            if type(secondDict[key]).__name__=='dict':                classLabel = classify(secondDict[key],featLabels,testVec)            else:                classLabel = secondDict[key]    return classLabel
myDat,labels = dtree.createDataSet()print(labels)myTree = myTree = treeplotter.retrieveTree(0)print(myTree)print('classify(myTree,labels,[1,0]):',classify(myTree,labels,[1,0]))print('classify(myTree,labels,[1,1]):',classify(myTree,labels,[1,1]))
#####结果输出
['no surfacing', 'flippers']{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3: 'maybe'}}('classify(myTree,labels,[1,0]):', 'no')('classify(myTree,labels,[1,1]):', 'yes')

####存储决策树

由于决策树的构造十分耗时,所以用创建好的决策树解决分类问题可以极大的提高效率。因此需要使用python模块pickle序列化对象,序列化对象可以在磁盘上保存对象,并在需要的地方读取出来,任何对象都可以执行序列化操作。

#使用pickle模块存储决策树
import pickledef storeTree(inputTree,filename):    fw = open(filename,'w')    pickle.dump(inputTree,fw)    fw.close()
def grabTree(filename): fr = open(filename) return pickle.load(fr)

###决策树算法小结

决策树分类器就像带有终止块的流程图,终止块表示分类结果。首先我们需要测量集合数据中的熵即不一致性,然后寻求最优方案划分数据集,直到数据集中的所有数据属于同一分类。决策树的构造算法有很多版本,本文中用到的是ID3 ,最流行的是C4.5和CART。


Python代码大全
Python源程序、源代码、源码分享,Python代码大全,Python源代码学习,Python入门,Python基础教程。
 最新文章