病毒是世界上最神秘的微生物,与人类健康息息相关。全球病毒种类繁多且高度分化,在生态系统中扮演着至关重要的角色。近年来,随着宏转录组学的迅猛发展,为全球RNA病毒多样性的评估提供了强有力的支撑,RNA病毒研究从最初以人类和动物为主,逐渐扩展到被忽视的无脊椎动物及各地不同生境中的环境样本。尽管通过不断扩大采样范围和优化测序技术在丰富全球RNA病毒多样性方面取得了显著进展,但目前学术界对RNA病毒的鉴定仍然十分依赖于已知病毒序列同源性,这使得我们对这些不具备序列同源性的高度分化病毒“暗物质”知之甚少。2024年10月9日,中山大学医学院施莽教授团队和阿里云李兆融团队合作在Cell上发表了文章Using artificial intelligence to document the hidden RNA virosphere。研究团队利用AI技术发现了180个病毒超群和16万余种全新RNA病毒,对已知病毒种类扩充了近30倍。其中包括传统研究方法未能发现的病毒“暗物质”,极大扩展了全球RNA病毒的多样性。这一突破标志着深度学习算法在病毒发现领域取得了里程碑式的进展,为病毒学研究开创了一种全新的范式(图1)。