薄膜沉积技术介绍---CVD(化学气相沉积)

文摘   2024-10-29 22:38   河北  

更多精彩,点击关注


芯路猎人       

薄膜沉积工艺主要分为物理气相沉积和化学气相沉积两类。对于做半导体材料生长的从业人员而言,常采用的是PVD或CVD工艺,本文介绍下化学气相沉积技术(CVD)。
CVD(化学气相沉积)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。
化学气相沉积法是传统的制备薄膜的技术,其原理是利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,而在基体上形成薄膜。化学气相沉积包括常压化学气相沉积、等离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积等。不过随着技术的发展,CVD技术也不断推陈出新,出现了很多针对某几种用途的专门技术,在此特为大家盘点介绍一些CVD技术。

等离子体增强化学气相沉积(PECVD)

等离子体增强化学气相沉积是在化学气相沉积中,激发气体,使其产生低温等离子体,增强反应物质的化学活性,从而进行外延的一种方法。该方法可在较低温度下形成固体膜。例如在一个反应室内将基体材料置于阴极上,通入反应气体至较低气压(1~600Pa),基体保持一定温度,以某种方式产生辉光放电,基体表面附近气体电离,反应气体得到活化,同时基体表面产生阴极溅射,从而提高了表面活性。在表面上不仅存在着通常的热化学反应,还存在着复杂的等离子体化学反应。沉积膜就是在这两种化学反应的共同作用下形成的。激发辉光放电的方法主要有:射频激发,直流高压激发,脉冲激发和微波激发。    
等离子体增强化学气相沉积的主要优点是沉积温度低,对基体的结构和物理性质影响小;膜的厚度及成分均匀性好;膜组织致密、针孔少;膜层的附着力强;应用范围广,可制备各种金属膜、无机膜和有机膜。

高密度等离子体化学气相淀积(HDP CVD)

HDP-CVD 是一种利用电感耦合等离子体 (ICP) 源的化学气相沉积设备,是一种越来越受欢迎的等离子体沉积设备。HDP-CVD(也称为ICP-CVD)能够在较低的沉积温度下产生比传统PECVD设备更高的等离子体密度和质量。此外,HDP-CVD 提供几乎独立的离子通量和能量控制,提高了沟槽或孔填充能力。但是,HDP-CVD 配置的另一个显著优势是,它可以转换为用于等离子体刻蚀的 ICP-RIE。在预算或系统占用空间受限时,优势明显。
听起来可能很奇怪。但是这两种类型的工艺确实可以在同一个系统中运行。虽然存在一些内部差异,例如额外的气体入口,但两种设备的核心结构几乎完全相同。
在HDP CVD工艺问世之前,大多数芯片厂普遍采用PECVD进行绝缘介质的填充。这种工艺对于大于0.8微米的间隔具有良好的填孔效果,然而对于小于0.8微米的间隙,PECVD工艺一步填充具有高的深宽比的间隔时会在间隔中部产生夹断和空洞。在探索如何同时满足高深宽比间隙的填充和控制成本的过程中诞生了HDP CVD工艺,它的突破创新之处在于,在同一个反应腔中同步地进行沉积和刻蚀工艺。    

微波等离子化学气相沉积(MPCVD)

微波等离子化学气相沉积技术(MPCVD)适合制备面积大、均匀性好、纯度高、结晶形态好的高质量硬质薄膜和晶体。MPCVD是制备大尺寸单晶金刚石有效手段之一。该方法利用电磁波能量来激发反应气体。由于是无极放电,等离子体纯净,同时微波的放电区集中而不扩展,能激活产生各种原子基团如原子氢等,产生的离子的最大动能低,不会腐蚀已生成的金刚石。
通过对MPCVD沉积反应室结构的结构调整,可以在沉积腔中产生大面积而又稳定的等离子体球,因而有利于大面积、均匀地沉积金刚石膜,这一点又是火焰法所难以达到的,因而微波等离子体法制备金刚石膜的优越性在所有制备法中显得十分的突出。

微波电子回旋共振等离子体化学气相沉积(ECR-MPCVD)

在MPCVD中为了进一步提高等离子体密度,又出现了电子回旋共振MPCVD(Electron Cyclotron Resonance CVD,简称ECR-MPCVD)。由于微波CVD在制备金刚石膜中的独有优势,使得研究人员普遍使用该方法制备金刚石膜,通过大量的研究,不仅在MPCVD制备金刚石膜的机理上取得了显著的成果,而且用CVD法制备的金刚石膜也广泛应用在工具、热沉、光学、高温电子等领域的工业研究与应用。

超高真空化学气相沉积(UHV/CVD)

超高真空化学气相沉积(UHV/CVD)是制备优质亚微米晶体薄膜、纳米结构材料、研制硅基高速高频器件和纳电子器件的关键的先进薄膜技术。
超高真空化学气相沉积技术发展于20世纪80年代末,是指在低于10-6 Pa (10-8 Torr) 的超高真空反应器中进行的化学气相沉积过程,特别适合于在化学活性高的衬底表面沉积单晶薄膜。石墨烯就是可以通过UHV/CVD生产的材料之一。与传统的气相外延不同,UHV/CVD技术采用低压和低温生长,能够有效地减少掺杂源的固态扩散,抑制外延薄膜的三维生长。UHV/CVD系统反应器的超高真空避免了Si衬底表面的氧化,并有效地减少了反应气体所产生的杂质掺入到生长的薄膜中。在超高真空条件下,反应气分子能够直接传输到衬底表面,不存在反应气体的扩散及分子间的复杂相互作用,沉积过程主要取决于气-固界面的反应。传统的气相外延中,气相前驱物通过边界层向衬底表面的扩散决定了外延薄膜的生长速率。超高真空使得气相前驱物分子直接冲击衬底表面,薄膜的生长主要由表面的化学反应控制。因此,在支撑座上的所有基片(衬底)表面的气相前驱物硅烷或锗烷分子流量都是相同的,这使得同时在多基片上实现外延生长成为可能。    

低压化学气相沉积(LPCVD)

低压化学气相沉积法(Low-pressure CVD,LPCVD)的设计就是将反应气体在反应器内进行沉积反应时的操作压力,降低到大约133Pa以下的一种CVD反应。LPCVD压强下降到约133Pa以下,与此相应,分子的自由程与气体扩散系数增大,使气态反应物和副产物的质量传输速率加快,形成薄膜的反应速率增加,即使平行垂直放置片子片子的片距减小到5~10mm,质量传输限制同片子表面化学反应速率相比仍可不予考虑,这就为直立密排装片创造了条件,大大提高了每批装片量。
以LPCVD法来沉积的薄膜,将具备较佳的阶梯覆盖能力,很好的组成成份和结构控制、很高的沉积速率及输出量。再者LPCVD并不需要载子气体,因此大大降低了颗粒污染源,被广泛地应用在高附加价值的半导体产业中,用以作薄膜的沉积。LPCVD广泛用于二氧化硅(LTO TEOS)、氮化硅(低应力)(Si3N4)、多晶硅(LP-POLY)、磷硅玻璃(BSG)、硼磷硅玻璃(BPSG)、掺杂多晶硅、石墨烯、碳纳米管等多种薄膜。
   

热化学气相沉积(TCVD)

热化学气相沉积(TCVD)是指利用高温激活化学反应进行气相生长的方法。广泛应用的TCVD技术如金属有机化学气相沉积、氯化物化学气相沉积、氢化物化学气相沉积等均属于热化学气相沉积的范围。热化学气相沉积按其化学反应形式可分成几大类:
(1)化学输运法:构成薄膜物质在源区与另一种固体或液体物质反应生成气体.然后输运到一定温度下的生长区,通过相反的热反应生成所需材料,正反应为输运过程的热反应,逆反应为晶体生长过程的热反应。
(2)热解法:将含有构成薄膜元素的某种易挥发物质,输运到生长区,通过热分解反应生成所需物质,它的生长温度为1000-1050摄氏度。
(3)合成反应法:几种气体物质在生长区内反应生成所生长物质的过程,上述三种方法中,化学输运法一般用于块状晶体生长,分解反应法通常用于薄膜材料生长,合成反应法则两种情况都用。热化学气相沉积应用于半导体材料,如Si,GaAs,InP等各种氧化物和其它材料。

高温化学气相沉积(HTCVD)

高温化学气相沉积是碳化硅晶体生长的重要方法。HTCVD生长碳化硅晶体是在密闭的反应器中,外部加热使反应室保持所需要的反应温度(2000℃~2300℃)。高温化学气相沉积是在衬底材料表面上产生的组合反应,是一种化学反应。它涉及热力学、气体输送及膜层生长等方面的问题,根据反应气体、排出气体分析和光谱分析,其过程一般分为以下几步:混合反应气体到达衬底材料表面;反应气体在高温分解并在衬底材料表面上产生化学反应生成固态晶体膜;固体生成物在衬底表面脱离移开,不断地通入反应气体,晶体膜层材料不断生长。    

中温化学气相沉积(MTCVD)

MTCVD硬质涂层工艺技术,在20世纪80年代中期就已问世,但在当时并没有引起人们的重视,直到20世纪90年代中期,世界上主要硬质合金工具生产公司,利用HTCVD和MTCVD技术相结合,研究开发出新型的超级硬质合金涂层材料,有效地解决了在高速、高效切削、合金钢重切削、干切削等机械加工领域中,刀具使用寿命低的难高强度题才引起广泛的重视。目前,已在涂层硬质合金刀具行业投入生产应用,效果十分显著。
MTCVD技术沉积工艺如下。沉积温度:700~ 900℃;沉积反应压力:2X103~2X104Pa;主要反应气体配比:CH3CN:TiCl4:H2=0.01:0.02:1;沉积时间:1一4h。

金属有机化合物化学气相沉积(MOCVD)

MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族、Ⅱ-Ⅵ副族化合物半导体以及它们的多元固溶体的薄层单晶材料。通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用直流加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。    
MOCVD适用范围广泛,几乎可以生长所有化合物及合金半导体,非常适合于生长各种异质结构材料,还可以生长超薄外延层,并能获得很陡的界面过渡,生长易于控制,可以生长纯度很高的材料,外延层大面积均匀性良好,可以进行大规模生产。

激光诱导化学气相沉积(LCVD)

LCVD是利用激光束的光子能量激发和促进化学气相反应的沉积薄膜方法。在光子的作用下,气相中的分子发生分解,原子被激活,在衬底上形成薄膜。这种方法与常规的化学气相沉积(CVD)相比,可以大大降低衬底的温度,防止衬底中杂质分布截面受到破坏,可在不能承受高温的衬底上合成薄膜。与等离子体化学气相沉积方法相比,可以避免高能粒子辐照在薄膜中造成损伤。
根据激光在化学气相沉积过程中所起的作用不同可以将LCVD分为光LCVD和热LCVD,它们的反应机理也不尽相同。光LCVD是利用反应气体分子或催化分子对特定波长的激光共振吸收,反应分子气体收到激光加热被诱导发生离解的化学反应,在合适的制备工艺参数如激光功率、反应室压力与气氛的比例、气体流量以及反应区温度等条件下形成薄膜。光LCVD原理与常规CVD主要不同在于激光参与了源分子的化学分解反应,反应区附近极陡的温度梯度可精确控制,能够制备组分可控、粒度可控的超微粒子。
热LCVD主要利用基体吸收激光的能量后在表面形成一定的温度场,反应气体流经基体表面发生化学反应,从而在基体表面形成薄膜。热LCVD过程是一种急热急冷的成膜过程,基材发生固态相变时,快速加热会造成大量形核,激光辐照后,成膜区快速冷却,过冷度急剧增大,形核密度增大。同时,快速冷却使晶界的迁移率降低,反应时间缩短,可以形成细小的纳米晶粒。 
来源:仪器信息网

———— / END / ————

*免责声明:以上内容整理自网络,仅供交流学习之用。如有内容、版权问题,请留言与我们联系进行删除

       

👆关注星标公众号,获取更多精彩行业内容点赞👍🏻在看⭐️

芯路猎人
专注芯片半导体行业中高端人才招聘服务,分享行业事件、知识、机会,助力中国芯片半导体产业发展!
 最新文章