首页
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
更多
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
【专题精讲】矩形、菱形、正方形的5大知识点
教育
2024-11-01 19:19
湖北
👇
👇👇
免费进
学习群
!
以微课堂学习群
奥数国家级教练与四名特级
教师
联手执教。
点击可直接打开
【七年级数学】第一学期期中考试卷-0
6
【八年级数学】第一学期期中考试卷-0
6
【九年级数学】第一学期期中考试卷-0
6
需要电子打印版参见文末:
阅读原文
一、矩形、菱形、正方形的性质
1.矩形的性质
①具有平行四边形的一切性质;
②矩形的四个角都是直角;
③矩形的对角线相等;
④矩形是轴对称图形,它有两条对称轴;
⑤直角三角形斜边上的中线等于斜边的一半。
2.菱形的性质
①具有平行四边形的一切性质;
②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形是轴对称图形,每条对角线所在的直线都是它的对称轴;
⑤菱形的面积=底×高=对角线乘积的一半。
3.正方形的性质
正方形具有平行四边形,矩形,菱形的一切性质
①边:四边相等,对边平行;
②角:四个角都是直角;
③对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45度;
④正方形是轴对称图形,有四条对称轴。
例1 矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为 ( )
A.360 B.90
C.270 D.180
例2 如图,矩形ABCD中,AE⊥BD于点E,对角线AC与BD相交于点O,BE:ED=1:3,AB=6cm,求AC的长。
例3 如图, O是矩形ABCD 对角线的交点, AE平分 ∠BAD,∠AOD=120° ,求∠AEO 的度数。
例4 菱形的周长为40cm,两邻角的比为1:2,则较短对角线的长________ 。
例5 如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.
二、矩形、菱形、正方形的判定
1.矩形的判定
①有一个内角是直角的平行四边形是矩形;
②对角线相等的平行四边形是矩形;
③有三个角是直角的四边形是矩形;
④还有对角线相等且互相平分的四边形是矩形。
2.菱形的判定方法
①有一组邻边相等的平行四边形是菱形;
②对角线互相垂直的平行四边形是菱形;
③四条边都相等四边形是菱形;
④对角线垂直平分的四边形是菱形。
3.正方形的判定
①菱形+矩形的一条特征;
②菱形+矩形的一条特征;
③平行四边形+一个直角+一组邻边相等。
说明一个四边形是正方形的一般思路是:先判断它是矩形,在判断这个矩形也是菱形;或先判断它是菱形,再判断这个菱形也是矩形。
例1. 如图,在△ABC中,AB=AC,点D是边BC的中点,过点A、D分别作BC与AB的平行线,并交于点E,连续EC、AD。
求证:四边形ADCE是矩形。
例2.如图,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC,DF//AB.
求证:AD与EF互相垂直平分。
例3.已知如图,在△ABC,∠ACB=900,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF∥BC。
求证:四边形CDEF是菱形。
三、矩形、菱形、正方形
与函数综合题
1.利用矩形、菱形、正方形的知识解决函数问题;
2.利用函数知识解决矩形、菱形、正方形的问题;
例1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离。
例2.如图,点B、C分别在两条直线y=2x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是正方形,则k值为______.
例3 已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式。
四、矩形、正方形的翻折
1.从翻折中找出对称轴,利用对称性找相等关系。
2.利用相等关系建立方程解决问题。
例1 如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若CF=1,FD=2,则BC的长是( )
A.3√6 B.2√6
C.2√5 D.2√3
例2 如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为( )
A.1或2 B. 2或3
C.3或4 D. 4或5
例3 如图,在边长为1的正方形ABCD中,E为AD边上一点,连接BE,将△ABE沿BE对折,A点恰好落在对角线BD上的点F处。延长AF,与CD边交于点G,延长FE,与BA的延长线交于点H,则下列说法:①△BFH为等腰直角三角形;②△ADF≌△FHA; ③∠DFG=60°;④DE=2-√2;⑤S△AEF=S△DFG.其中正确的说法有( )
A.1个 B.2个
C.3个 D.4个
例4 四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H。
(1)如图1,猜想AH与AB有什么数量关系?并证明。
(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长。
五、综合运用
1.计算。利用矩形、菱形、正方形中的等腰三角形和直角三角形进行计算。
2.证明。利用矩形、菱形、正方形的性质和判定,结合全等三角形、等腰三角形、等边三角形的知识展开证明。
3.探究。利用矩形、菱形、正方形等知识展开探究。
例1 在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由。
例2 现有两个具有一个公共顶点的等腰直角三角形△ADE和△ABC,其中∠ACB和∠AED=90°,且AC=BC,AE=DE,CF⊥AB于F,M为线段BD中点,连接CM,EM.
(1)如图1,当A、B、D在同一条直线上时,若AC=1,AE=2,求FM的长度;
(2)如图1,当A、B、D在同一条直线上时,求证:CM=EM;
(3)如图2,当A、B、D在同一条直线上时,请探究CM,EM的数量关系和位置关系,请先给出结论,然后证明。
来源 网络 | 侵删
http://mp.weixin.qq.com/s?__biz=MzI1NjYzNjE1NQ==&mid=2247656414&idx=2&sn=162a1df5aa82e677d3d9c78fcb4e6034
以微课堂
奥数国家级教练与四名特级教师联手打造,初中数学精品微课堂。
最新文章
初中几何 9大模型:(2)将军饮马模型
一元一次方程:掌握好这13种应用题型,考试得高分!
初中几何9大模型:(1)半角模型
初中数学最值问题:10个例题,快速掌握
【初中几何】三角形三边关系,3大类型抓紧掌握
【初三数学】重要考点之相似模型,8种常考模型解读,逢考必错
【初中数学】一次函数常见题型+解析(上)建议收藏!
【专题解析】一次函数面积专题 ——初识铅锤法
【好题精讲】反比例函数图像上的动点问题
【初中数学】动点路径问题都在这儿了
【初中数学】 一元一次方程 · 解方程易错点分析及含参方程求解
【初中数学】三角形勾股定理的16种证明方法
【二次根式】隐含条件+经典例题(下)
【初中数学】中点的辅助线做法!必掌握技巧!
【名师支招】四边形面积专题
【中考数学】善用隐形圆 巧解最值题
【几何模型】相似基本模型2之母子形与一线三等角
【名师专题】相似三角形专题解析
【初一数学】期中考试好题精选(附详细解析)
名师支招: 全等辅助线专题1—截长补短
【初二数学】画轴对称图形经典例题解析,逢考必错的高频考点
【初中数学】三角形勾股定理的16种证明方法
【初中数学】一元一次方程9大题型解析(中)
初三数学重难点之【二次函数】最全知识点总结
【初一数学】期中考易错点、考点、实用公式全归纳
初中数学老师最爱设置的32个考试陷阱,全看过避免扣分!
【初中数学】一次函数常见题型+解析(下)建议收藏!
【初中数学】中点的辅助线做法!必掌握技巧!
【初中数学】一次函数常见题型+解析(上)建议收藏!
【初中数学】几何图形例题精讲!
【二次根式】考点解析+常见误区(上)
初中数学最经典的9大解题方法,贯穿三年都能用!
【初中数学】中考突破训练之压轴30题(下)你会做几道?
一元一次方程知识点总结+例题详解+习题练习
【初中数学】中考突破训练之压轴30题(中)你会做几道?
【初中数学】一元一次方程9大题型解析
【初中数学】中考突破训练之压轴30题(上)你会做几道?
【初一数学】常考试题题型总结(1)选择题专题解答技巧分析!
【几何模型】相似基本模型2之母子形与一线三等角
【初中数学】一元一次方程9大题型解析(上)
【名师专题】相似基本模型1之A型,X型及变式
【几何专题】等腰三角形必考点汇总,收藏!
【专题精讲】矩形、菱形、正方形的5大知识点
“二次函数”面积最值问题的几种解法
初中数学因式分解的12种方法精讲,考试必备!
【初中数学】动点路径问题都在这儿了
【初中数学】 一元一次方程 · 解方程易错点分析及含参方程求解
【初中数学】几何图形解题方法大全,全掌握不怕做题难
【好题精讲】反比例函数图像上的动点问题
初中数学因式分解的12种方法精讲,考试必备!
分类
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
原创标签
时事
社会
财经
军事
教育
体育
科技
汽车
科学
房产
搞笑
综艺
明星
音乐
动漫
游戏
时尚
健康
旅游
美食
生活
摄影
宠物
职场
育儿
情感
小说
曲艺
文化
历史
三农
文学
娱乐
电影
视频
图片
新闻
宗教
电视剧
纪录片
广告创意
壁纸头像
心灵鸡汤
星座命理
教育培训
艺术文化
金融财经
健康医疗
美妆时尚
餐饮美食
母婴育儿
社会新闻
工业农业
时事政治
星座占卜
幽默笑话
独立短篇
连载作品
文化历史
科技互联网
发布位置
广东
北京
山东
江苏
河南
浙江
山西
福建
河北
上海
四川
陕西
湖南
安徽
湖北
内蒙古
江西
云南
广西
甘肃
辽宁
黑龙江
贵州
新疆
重庆
吉林
天津
海南
青海
宁夏
西藏
香港
澳门
台湾
美国
加拿大
澳大利亚
日本
新加坡
英国
西班牙
新西兰
韩国
泰国
法国
德国
意大利
缅甸
菲律宾
马来西亚
越南
荷兰
柬埔寨
俄罗斯
巴西
智利
卢森堡
芬兰
瑞典
比利时
瑞士
土耳其
斐济
挪威
朝鲜
尼日利亚
阿根廷
匈牙利
爱尔兰
印度
老挝
葡萄牙
乌克兰
印度尼西亚
哈萨克斯坦
塔吉克斯坦
希腊
南非
蒙古
奥地利
肯尼亚
加纳
丹麦
津巴布韦
埃及
坦桑尼亚
捷克
阿联酋
安哥拉