Food Bioprod Process:枸杞叶茶中咖啡酰亚精胺衍生物的离子交换树脂纯化分离及机理

文摘   2024-07-22 08:00   英国  
      宁夏医科大学药学院马学琴教授团队在Food and Bioproducts Processing发表题目为“Purification and separation of caffeoyl spermidine derivatives from goji leaf tea with ion exchange resin and the mechanisms involved”研究论文(枸杞叶茶中咖啡酰亚精胺衍生物的离子交换树脂纯化分离及机理)。
摘要:
      枸杞叶茶是一种著名的饮料,因其众多的健康益处而被开发和利用。最近,我们成功地从枸杞叶茶(LBLS)中提取了四种咖啡酰亚精胺衍生物,即 N-咖啡酰腐胺、N-乙酰-N′-咖啡酰腐胺、N1-二氢咖啡酰-N10-咖啡酰亚精胺和 N1, N10-二咖啡酰亚精胺。鉴于 LBLS 表现出的多种生物活性,我们的研究旨在开发一种精确的分离方法并探索可能的纯化机制。首先优化提取工艺,从6种树脂中筛选出001×7树脂用于LBLS的富集纯化;然后利用FT-IR、DSC、XRD、XPS等技术对吸附机理进行综合研究,通过吸附动力学、等温线模型和吸附热力学研究表明,LBLS在001×7树脂上的吸附为自发放热过程,遵循单分子层吸附机理,符合拟二级动力学模型和Langmuir模型。最优工艺为:以2 BV/h的速度将25mg/mL LBL提取物吸附于3.5 BV(床体积)上,再以相同速度用8% NaCl-55%乙醇溶液洗脱5 BV,最后采用PHPLC分离LBLS得到单体化合物,该工艺LBLS收率为1.57%±0.1%,共得到4个单体,纯度在90.7%~100%之间。
研究结果:
3.1 HPLC定量分析
Fig. 1. A: The structural formulas of LBLS (NCP, NANCP, NDNCP, NNDCP) in LBL. B: The HPLC diagram of the extract solution of LBL; C: The HPLC diagram of the mixed solution of the reference substance;
3.2 影响LBL提取的因素
Fig. 2. The effects of ethanol concentration (A), solid-liquid ratio (B), extraction time (C), and extraction times (D) on the extraction of LBLA from LBL.
3.3 吸附树脂的筛选
Fig. 3. The recovery heatmap of the main components in the LBL extract eluted with AB-8 (A), D101 (B), HPD100 (C) and LSA-5B (D); The adsorption capacity, desorption capacity, adsorption rate, and desorption rate of LBLS NCP (E), NANCP (F), NDNCP (G), NNDCP (H) on 001×7 and D001-CC resins.
3.4 淋洗液类型的选择
Fig. 4. A: LBLS recovery rates for different types of eluents; B: Adsorption capacity of LBLS in sample solutions with different pH values.
3.6 吸附动力学
Fig. 5. The pseudo-first-order and pseudo-second-order kinetic fitting curves of NCP (A), NANCP (B), NDNCP (C), and NNDCP (D); The Weber-Morris intraparticle diffusion fitting curves of LBLS (E).
3.7 吸附等温线
Fig. 6. The adsorption isotherms of NCP (A), NANCP (B), NDNCP (C), and NNDCP (D) on 001×7 resin; Langmuir fitting curves of NCP (E), NANCP (G), NDNCP (I) and NNDCP (K); Friedrich fitting curves of NCP (F), NANCP (H), NDNCP (J) and NNDCP (L); M: Van’t Hoff plot for determination of thermodynamic parameters for LBLS adsorption on 001×7 resin.
3.9 动态突破曲线
Fig. 7. The dynamic breakthrough curves of NCP (A), NANCP (B), NDNCP (C) and NNDCP (D) on 001×7 resin at flow rates of 1, 2, and 3 BV/h; The dynamic desorption curves of NCP (E), NANCP (F), NDNCP (G) and NNDCP (H) on 001×7 resin at flow rates of 1, 2, and 3BV/h.
3.11. 机理分析
Fig. 8. Characterization of the 001×7 resin. DSC image (A), XRD diagram (B), full range of XPS spectra (C), and FT-IR spectra (D) of 001×7 resin before and after adsorbing LBLS.
3.12. 最优纯化工艺与初始纯化工艺的比较
Fig. 9. Reuse of 001×7 and SCX fillers for the recovery rates of LBLS.
3.13. 分离过程
Fig. 10. Chromatogram of PHPLC purified LBLS.
原文链接:
https://doi.org/10.1016/j.fbp.2024.06.005

欢迎投稿,请私信公众号平台回复【投稿】二字获取具体信息



版权申明

原创内容仅代表原创编译,本平台不主张对原文的版权。本平台转载仅仅是出于学术交流和传播信息的需要,不存在任何商业性质,并不意味着代表本平台观点或证实其内容的真实性。转载文章版权归原作者所有,作者如果不希望被转载或有侵权行为,请私信本平台删除。小编水平有限,如有错误,请见谅。

食品技术food technology
本平台提供关于食品以及生物医药相关的最新工程技术研究,快讯,会议,研讨会和培训等消息的发布和推广,姊妹号:食品科学food science,投稿合作请后台私信或联系scifood@126.com