引言
由西安交通大学薛德祯教授与美国洛斯阿拉莫斯国家实验室 (LANL) 的T. Lookman教授担任特约编辑的《材料基因工程前沿(英文)》(Materials Genome Engineering Advances,简称:MGE Advances)2024年第4期“机器学习辅助材料设计”特约专刊现已正式刊出。欢迎各位专家学者关注、阅读、分享和引用!
2024第4期文章集锦
扫码阅读原文
1. Editorial: Shaping the future of materials science through machine learning
Dezhen Xue, Turab Lookman
https://onlinelibrary.wiley.com/doi/10.1002/mgea.80
引用:Xue D, Lookman T. Editorial: Shaping the future of materials science through machine learning. MGE Advances. 2024; 2(4): e80.https://doi.org/10.1002/mgea.80
扫码阅读原文
2. Harnessing quantum power: Revolutionizing materials design through advanced quantum computation
Zikang Guo, Rui Li, Xianfeng He, Jiang Guo, Shenghong Ju
https://onlinelibrary.wiley.com/doi/10.1002/mgea.73
引用:Guo Z, Li R, He X, Guo J, Ju S. Harnessing quantum power: revolutionizing materials design through advanced quantum computation. MGE Advances. 2024; 2(4): e73.
https://doi.org/10.1002/mgea.73
扫码阅读原文
3. A review on inverse analysis models in steel material design
Yoshitaka Adachi, Ta-Te Chen, Fei Sun, Daichi Maruyama, Kengo Sawai, Yoshihito Fukatsu, Zhi-Lei Wang
https://onlinelibrary.wiley.com/doi/10.1002/mgea.71
引用:Adachi Y, Chen T-T, Sun F, et al. A review on inverse analysis models in steel material design. MGE Advances. 2024; 2(4): e71. https://doi.org/10.1002/mgea.71
扫码阅读原文
4. Accelerating spin Hall conductivity predictions via machine learning
Jinbin Zhao, Junwen Lai, Jiantao Wang, Yi-Chi Zhang, Junlin Li, Xing-Qiu Chen, Peitao Liu
https://onlinelibrary.wiley.com/doi/10.1002/mgea.67
引用:Zhao J, Lai J, Wang J, et al. Accelerating spin Hall conductivity predictions via machine learning. MGE Advances. 2024; 2(4): e67. https://doi.org/10.1002/mgea.67
扫码阅读原文
5. High-dimensional Bayesian optimization for metamaterial design
Zhichao Tian, Yang Yang, Sui Zhou, Tian Zhou, Ke Deng, Chunlin Ji, Yejun He, Jun S. Liu
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.79
引用:Tian Z, Yang Y, Zhou S,et al. High-dimensional Bayesian optimization for metamaterial design. MGE Advances. 2024; 2(4): e79. https://doi.org/10.1002/mgea.79
扫码阅读原文
6. Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning
Zhanjie Liu, Yixuan Huo, Qionghai Chen, Siqi Zhan, Qian Li, Qingsong Zhao, Lihong Cui, Jun Liu
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.78
引用:Liu Z, Huo Y, Chen Q, et al. Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning. MGE Advances. 2024; 2(4): e78. https://doi.org/10.1002/mgea.78
扫码阅读原文
7. PDGPT: A large language model for acquiring phase diagram information in magnesium alloys
Zini Yan, Hongyu Liang, Jingya Wang, Hongbin Zhang, Alisson Kwiatkowski da Silva, Shiyu Liang, Ziyuan Rao, Xiaoqin Zeng
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.77
引用:Yan Z, Liang H, Wang J, et al. PDGPT: a large language model for acquiring phase diagram information in magnesium alloys. MGE Advances. 2024; 2(4): e77.
https://doi.org/10.1002/mgea.77
扫码阅读原文
8. Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures
Yudong Shi, Yinggan Zhang, Jiansen Wen, Zhou Cui, Jianhui Chen, Xiaochun Huang, Cuilian Wen, Baisheng Sa, Zhimei Sun
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.76
引用:Shi Y, Zhang Y, Wen J, et al.Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures. MGE Advances. 2024; 2(4): e76. https://doi.org/10.1002/mgea.76
扫码阅读原文
9. Machine learning-assisted performance analysis of organic photovoltaics
Sijing Zhong, Jiayi Huang, Hengyu Meng, Zhuo Feng, Qianyue Wang, Zhenyu Huang, Lijie Zhang, Shiwei Li, Weiyang Gong, Yusen Huang, Lei Ying, Ning Li
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.74
引用:Zhong S, Huang J, Meng H, et al. Machine learning-assisted performance analysis of organic photovoltaics. MGE Advances. 2024; 2(4): e74. https://doi.org/10.1002/mgea.74
扫码阅读原文
10. Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks
Bangtan Zong, Jinshan Li, Changlu Zhou, Ping Wang, Bin Tang, Ruihao Yuan
https://doi.org/10.1002/mgea.68
引用:Zong B, Li J, Zhou C, Wang P, Tang B, Yuan R. Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks. MGE Advances. 2024; e68. https://doi.org/10.1002/mgea.68
扫码阅读原文
11. Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning
Peiheng Ding, Changqing Shu, Shasha Zhang, Zhaokuan Zhang, Xingshuai Liu, Jicong Zhang, Qian Chen, Shuaipeng Yu, Xiaolin Zhu, Zhengjun Yao
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.75
引用:Ding P, Shu C, Zhang S, et al. Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning. MGE Advances. 2024; e75. https://doi.org/10.1002/mgea.75
扫码阅读原文
特约编辑
Prof. Dezhen XUE
E-Mail: xuedezhen@xjtu.edu.cn
Prof. Turab LOOKMAN
E-Mail: turablookman@gmail.com
点击以下链接查看更多往期文章
【文章汇总】《材料基因工程前沿(英文)》2023年第一期和第二期文章
【文章汇总】《材料基因工程前沿(英文)》2024年第一期文章
《材料基因工程前沿(英文)》简介
《材料基因工程前沿(英文)》(Materials Genome Engineering Advances,简称:MGE Advances)作为材料基因工程领域首个高水平综合性学术期刊,其宗旨是面向国家重点战略布局与材料学科国际学术前沿发展的重大需求,聚焦材料基因工程领域,刊载先进材料计算、高通量/自动化/智能化材料实验技术、材料数据库与大数据技术等材料基因工程关键技术的研究进展和前沿成果,以及三者在材料新效应/新原理探索和新材料发现等方面的重要应用,创建一个跨学科多领域交叉融合的国际一流高水平出版平台和学术交流平台,推动新材料研发模式变革。
2022年入选“中国科技期刊卓越行动计划高起点新刊项目”。
2024年入选北京市科委“2024支持高水平国际科技期刊建设-强刊提升”项目。
2024年被世界五大文献检索系统之一的开放获取期刊目录DOAJ收录。
《材料基因工程前沿(英文)》以全OA开放获取模式,在国际出版平台Wiley Online library全文数字化上线出版。期刊采用国际先进的单篇优先出版模式,实现了最新学术成果的及时快速优先发表并高效广泛地传播给全球读者,提升了期刊的可见度和传播效率。
2026年之前投稿免APC (Article Publication Charge)
期刊主页
特刊征稿
投稿方向
投稿指南
微信公众号|mgea2023
欢迎关注!
Materials Genome Engineering Advances编辑部
地址: 北京海淀区学院路30号
邮箱: mgeadvances@ustb.edu.cn
电话: (+86) 010-6233 3882
期刊网址:
https://onlinelibrary.wiley.com/journal/29409497
科研云
线上直播/精品课程
资讯追踪/期刊速递/科研工具