▲通讯作者:胡良兵
通讯单位:马里兰大学
DOI:10.1002/adma.202106436(点击文末「阅读原文」,直达链接)
总之,本研究报道了一种通过在碳载体上引入金属氧化物,以合成稳定MEA氧化物碳纳米颗粒的方法。DFT计算表明,MEA纳米颗粒与分散在碳上的金属氧化物之间的结合能高于MEA纳米颗粒与碳之间的结合能,理论上表明该研究设计催化剂具有更好的稳定性。通过使用几种模型系统,证实了与传统催化剂相比,该研究设计催化剂表现出优越的热稳定性和电化学稳定性。该项研究工作强调了在碳载体上稳定MEA方面,氧化物中间体起到关键作用;为实现MEA纳米颗粒作为高效和实用的催化剂,提供良好的发展前景。
文献信息:Tangyuan Li, et al, Interface Engineering Between Multi-Elemental Alloy Nanoparticles and a Carbon Support Toward Stable Catalysts, Advanced Materials. 2021. https://doi.org/10.1002/adma.202106436
超快高温焦耳热冲击技术推广
马弗炉、管式炉升温装置VS焦耳热升温装置
向上滑动阅览
Ultrarapid Nanomanufacturing of High‐Quality Bimetallic Anode Library toward Stable Potassium‐Ion Storage. Angewandte Chemie., 2023. DOI: 10.1002/anie.202303600
Ultrafast Non-Equilibrium Phase Transition Induced Twin Boundaries of Spinel Lithium Manganate, Advanced Energy Materials 2023. DOI: 10.1002/aenm.202302484
High-temperature shock synthesis of high-entropy-alloy nanoparticles for catalysis. Chinese Journal of Catalysis, 2023. DIO: https://doi.org/10.1016/S1872-2067(23)64428-6.
Rapid High-Temperature Liquid Shock Synthesis of High-Entropy Alloys for Hydrogen Evolution Reaction. ACS nano., 2024. DOI: 10.1021/acsnano.3c07703
Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock. Nano Letter 2016, 16 (9), 5553-5558. DOI:10. 1021/acs.nanolett.6b02096.
High-Temperature Shock Enabled Nanomanufacturing for Energy-Related Applications. Advanced Energy Materials 2020, 10 (33), DOI: 10. 1002/aenm.202001331.
公司官网:
https://www.zhongkejingyan.com.cn/
仪器信息网:
https://www.instrument.com.cn/netshow/SH118239/