ZK Insights | 3rd Nov 2024

文摘   2024-11-03 17:53   泰国  

Highlights

零知识证明递归与复合技术研究综述 (张宗洋 周子博 邓燚)

keyword: ZKP, Recursive proof, IPA, IVC, Commit-and-Proof

  • http://cjc.ict.ac.cn/online/onlinepaper/zzy-2024928120157.pdf

RLN- Rate-Limiting Nullifier

RLN (Rate-Limiting Nullifier) is a zk-gadget/protocol that enables spam prevention mechanism for anonymous environments.

  • https://rate-limiting-nullifier.github.io/rln-docs/

Naysaying Ligero and Brakedown proofs

We present the first instantiation of Naysayer proofs for Ligero & Brakedown polynomial commitment schemes

  • https://x.com/m2magician/status/1850844587537101225
  • https://np.engineering/posts/naysayer-lc/

An Update on Lookups w/ Ariel Gabizon

ZK HACK Whiteboard SEASON 2 MODULE 3. In this module, Nicolas Mohnblatt and Ariel Gabizon start by giving an overview of the lookup landscape, going over the three main approaches that have been used in lookup protocols. They then dive deep into one of those approaches, the log-derivative approach (or its clearer name, fractional sums).

ZK 黑客白板第二季第 3 单元。在本模块中,Nicolas Mohnblatt 和 Ariel Gabizon 首先概述了查找表技术,并介绍了查找协议中使用的三种主要方法。然后,他们深入探讨了其中一种方法,即对数派生方法(或其更清晰的名称,分数和)。

  • https://zkhack.dev/whiteboard/s2m3/

powdrVM: A Multi-Prover, Future-Proof zkVM

powdrVM is the zkVM with multi-prover flexibility. Developers can use Plonky3, Halo2 and eSTARKs in the same zkVM. powdrVM supports standard Rust.

powdrVM 是具有多验证器灵活性的 zkVM。开发人员可以在同一个 zkVM 中使用 Plonky3、Halo2 和 eSTARKs。powdrVM 支持标准 Rust。

  • https://x.com/powdr_labs/status/1851682014505669002
  • https://www.powdr.org/blog/powdrvm

Abstract Algebra: Theory and Applications

Thomas W. Judson 制作的线性代数课程内容的网站,包括了完整的教程和配套的视频讲解。不同内容分模块呈现,是非常优秀的学习材料。

  • http://matthematics.com/abstract/

Introducing DARA: A New Design for ZK Prover Networks

  • https://x.com/lagrangedev/status/1851285147494326523

  • https://www.lagrange.dev/blog/dara-a-new-design

  • https://matthematics.com/abstract/aata.html


Updates

Surya Mathialagan - Universal SNARGs for NP from Proofs of Completeness

  • https://www.youtube.com/watch?v=Tf9WvpLYNuc

PSE Lectures Ep 24 - Rational maps between elliptic curves

  • https://www.youtube.com/watch?v=HcvbbkKDmEU

PSE Lectures Ep 34 - Constructing the Weil pairing

  • https://www.youtube.com/watch?v=5s6xw8wKnUI

Bain Capital Crypto: Expanding

  • https://baincapitalcrypto.com/expanding/

Plonky3: it's now over 2 million hashes per second

  • https://x.com/dlubarov/status/1851667100542341155

Alex Block: Concrete Security of the FRI Protocol

  • https://www.youtube.com/watch?v=WC7BWhZNivA

Papers

DEEP Commitments and Their Applications

We circumvent the obstacle posed by the naive approach by decoupling the FRI step from the preceding steps. Our technique reduces an algebraic execution trace to a single polynomial commitment in a way that can be verified independently from a possible follow-up low degree test. The immediate implication is that a single polynomial, along with some supplementary commitment information, suffices as the witness to a polynomial commitment, as opposed to the entire algebraic execution trace. This difference results in a factor 100-1000 reduction in the memory cost of the now-not-so-na¨ ıve approach.

Alan Szepieniec 在论文中提出了一种承诺多项式的方法,这种方法允许分批甚至推迟执行 FRI 等 low degree 测试。特别是,它实现了 STARK 的(无限深度)聚合。

  • https://eprint.iacr.org/2024/1752

An update to the FRI-Binius paper

Improves the ring-switching technique for small-field polynomial commitments.

  • https://x.com/IrreducibleHW/status/1851283999131386222
  • https://eprint.iacr.org/2024/504

zkMarket : Privacy-preserving Digital Data Trade System via Blockchain

  • https://eprint.iacr.org/2024/1775

Critical Round in Multi-Round Proofs: Compositions and Transformation to Trapdoor Commitments

  • https://eprint.iacr.org/2024/1766

Quantum Black-Box Separations: Succinct Non-Interactive Arguments from Falsifiable Assumptions

  • https://eprint.iacr.org/2024/1763

Randoms

Mathematical Symbols

数学符号和数学格式写作的 4 页纸总结,有人打印出来贴在屏幕旁边 :)

  • https://www.cmor-faculty.rice.edu/~heinken/latex/symbols.pdf



如果你重视零知识证明技术信息的实效性和信息源质量的意义,不想娱乐至死、短视投机、无关广告、推荐算法、劣币驱逐良币的泥沙裹挟迷失,请多支持我们(包括给予赞助支持),让这一汨清流继续流淌~



* 📮 邮箱订阅:https://paragraph.xyz/@zkinsights
* 感谢 Kurt、Harry、fffmath、only4sim对本期 ZK Insights 的特别贡献!
 ZK Insights  Github repo Pull Request ZKPunk 
Github repo linkhttps://github.com/Antalpha-Labs/zk-insights
 https://insights.zkpunk.pro/ 
:Purple

Antalpha Labs Web3  Web3 

https://labs.antalpha.com

Twitterhttps://twitter.com/Antalpha_Labs

Youtubehttps://www.youtube.com/channel/UCNFowsoGM9OI2NcEP2EFgrw

hello.labs@antalpha.com

 文/Read More ,开启邮箱订阅🔛

XPTY
寓形宇内复几时,曷不委心任去留?胡为乎遑遑欲何之?富贵非吾愿,帝乡不可期。怀良辰以孤往,或植杖而耘耔。登东皋以舒啸,临清流而赋诗。
 最新文章