Highlights
零知识证明递归与复合技术研究综述 (张宗洋 周子博 邓燚)
keyword: ZKP, Recursive proof, IPA, IVC, Commit-and-Proof
http://cjc.ict.ac.cn/online/onlinepaper/zzy-2024928120157.pdf
RLN- Rate-Limiting Nullifier
RLN (Rate-Limiting Nullifier) is a zk-gadget/protocol that enables spam prevention mechanism for anonymous environments.
https://rate-limiting-nullifier.github.io/rln-docs/
Naysaying Ligero and Brakedown proofs
We present the first instantiation of Naysayer proofs for Ligero & Brakedown polynomial commitment schemes
https://x.com/m2magician/status/1850844587537101225 https://np.engineering/posts/naysayer-lc/
An Update on Lookups w/ Ariel Gabizon
ZK HACK Whiteboard SEASON 2 MODULE 3. In this module, Nicolas Mohnblatt and Ariel Gabizon start by giving an overview of the lookup landscape, going over the three main approaches that have been used in lookup protocols. They then dive deep into one of those approaches, the log-derivative approach (or its clearer name, fractional sums).
ZK 黑客白板第二季第 3 单元。在本模块中,Nicolas Mohnblatt 和 Ariel Gabizon 首先概述了查找表技术,并介绍了查找协议中使用的三种主要方法。然后,他们深入探讨了其中一种方法,即对数派生方法(或其更清晰的名称,分数和)。
https://zkhack.dev/whiteboard/s2m3/
powdrVM: A Multi-Prover, Future-Proof zkVM
powdrVM is the zkVM with multi-prover flexibility. Developers can use Plonky3, Halo2 and eSTARKs in the same zkVM. powdrVM supports standard Rust.
powdrVM 是具有多验证器灵活性的 zkVM。开发人员可以在同一个 zkVM 中使用 Plonky3、Halo2 和 eSTARKs。powdrVM 支持标准 Rust。
https://x.com/powdr_labs/status/1851682014505669002 https://www.powdr.org/blog/powdrvm
Abstract Algebra: Theory and Applications
Thomas W. Judson 制作的线性代数课程内容的网站,包括了完整的教程和配套的视频讲解。不同内容分模块呈现,是非常优秀的学习材料。
http://matthematics.com/abstract/
Introducing DARA: A New Design for ZK Prover Networks
https://x.com/lagrangedev/status/1851285147494326523
https://www.lagrange.dev/blog/dara-a-new-design
https://matthematics.com/abstract/aata.html
Updates
Surya Mathialagan - Universal SNARGs for NP from Proofs of Completeness
https://www.youtube.com/watch?v=Tf9WvpLYNuc
PSE Lectures Ep 24 - Rational maps between elliptic curves
https://www.youtube.com/watch?v=HcvbbkKDmEU
PSE Lectures Ep 34 - Constructing the Weil pairing
https://www.youtube.com/watch?v=5s6xw8wKnUI
Bain Capital Crypto: Expanding
https://baincapitalcrypto.com/expanding/
Plonky3: it's now over 2 million hashes per second
https://x.com/dlubarov/status/1851667100542341155
Alex Block: Concrete Security of the FRI Protocol
https://www.youtube.com/watch?v=WC7BWhZNivA
Papers
DEEP Commitments and Their Applications
We circumvent the obstacle posed by the naive approach by decoupling the FRI step from the preceding steps. Our technique reduces an algebraic execution trace to a single polynomial commitment in a way that can be verified independently from a possible follow-up low degree test. The immediate implication is that a single polynomial, along with some supplementary commitment information, suffices as the witness to a polynomial commitment, as opposed to the entire algebraic execution trace. This difference results in a factor 100-1000 reduction in the memory cost of the now-not-so-na¨ ıve approach.
Alan Szepieniec 在论文中提出了一种承诺多项式的方法,这种方法允许分批甚至推迟执行 FRI 等 low degree 测试。特别是,它实现了 STARK 的(无限深度)聚合。
https://eprint.iacr.org/2024/1752
An update to the FRI-Binius paper
Improves the ring-switching technique for small-field polynomial commitments.
https://x.com/IrreducibleHW/status/1851283999131386222 https://eprint.iacr.org/2024/504
zkMarket : Privacy-preserving Digital Data Trade System via Blockchain
https://eprint.iacr.org/2024/1775
Critical Round in Multi-Round Proofs: Compositions and Transformation to Trapdoor Commitments
https://eprint.iacr.org/2024/1766
Quantum Black-Box Separations: Succinct Non-Interactive Arguments from Falsifiable Assumptions
https://eprint.iacr.org/2024/1763
Randoms
Mathematical Symbols
数学符号和数学格式写作的 4 页纸总结,有人打印出来贴在屏幕旁边 :)
https://www.cmor-faculty.rice.edu/~heinken/latex/symbols.pdf
Antalpha Labs是一个非盈利的 Web3 开发者社区,致力于通过发起和支持开源软件推动 Web3 技术的创新和应用。
官网:https://labs.antalpha.com
Twitter:https://twitter.com/Antalpha_Labs
Youtube:https://www.youtube.com/channel/UCNFowsoGM9OI2NcEP2EFgrw
联系我们:hello.labs@antalpha.com
点击 阅读原文/Read More ,开启邮箱订阅🔛