ZK Insights | 30th June 2024

文摘   2024-06-30 22:21   澳大利亚  

Highlights

Introducing the ZK Catalog

  • https://medium.com/l2beat/introducing-the-zk-catalog-7ac6f22889c0
  • https://l2beat.com/zk-catalog

Ariel Gabizon UJ crypto course: the KZG PCS scheme and PlonK SNARK

  • https://github.com/arielgabizon/Lectures/blob/master/ujtalksKZG%2BPLONK.pdf

Disarming Fiat-Shamir footguns

  • https://blog.trailofbits.com/2024/06/24/disarming-fiat-shamir-footguns/

Building a Decentralized Privacy Preserving Order Book Exchange on Polygon Miden

  • https://alexanderjohnlee.medium.com/building-a-decentralized-privacy-preserving-order-book-exchange-on-polygon-miden-f4502a550cc5

FRIDA: Data-Availability Sampling from FRI

  • https://www.zksecurity.xyz/blog/posts/frida/

Montgomery Multiplication

Many algorithms in number theory, like prime testing or integer factorization, and in cryptography, like RSA, require lots of operations modulo a large number. The Montgomery (modular) multiplication is a method that allows computing such multiplications faster. Instead of dividing the product and subtracting n multiple times, it adds multiples of n to cancel out the lower bits and then just discards the lower bits.

  • https://cp-algorithms.com/algebra/montgomery_multiplication.html

zkPages

Zero-knowledge digital content single page store fronts. Enable anyone to create a secure digital content store front page on Starknet. Privacy-focused checkouts.

  • https://ethglobal.com/showcase/zkpages-n3aro

zKastle

zKastle is a solo strategy card game. Manage resources, and upgrade your village to make the maximum points possible. Make tactical decisions to help your village grow and flourish.

  • https://ethglobal.com/showcase/zkastle-jeh44

Solas

An attestation / citation system built on starknet using Cairo and starknet tooling.

  • https://ethglobal.com/showcase/solas-pekhm

Ingopedia

A comprehensive collection of resources and information related to Zero Knowledge Proofs from Ingonyama

  • https://www.ingonyama.com/ingopedia/communityguide

Updates

ZK Summit 11 Retrospective

Reflections on NFC cards and advanced cryptography at ZK Summit 11

  • https://www.cursive.team/blog/zk-summit

zkStudyClub - FRI-Binius: Polylogarithmic Proofs for Multilinears over Binary Towers (Ben Diamond)

  • https://www.youtube.com/watch?v=iZlJDT7V8Q4

Cloaking Layer - zCloak Network released its universal ZKP verification infrastructure for all blockchains

  • https://zcloaknetwork.medium.com/cloaking-layer-a-zk-verification-infra-for-all-chains-1162d3fcc37b

HyperNova: Recursive arguments for customizable constraint systems

The paper is now updated. The newly added content highlights a new use of folding schemes. Previously, folding schemes were used to construct IVC. We now show that certain folding schemes (e.g., Nova's) unlock a new approach to add ZK in proof systems.

  • https://eprint.iacr.org/2023/573.pdf

Papers

【论文速递】STOC 2024(量子、电路、单向函数、承诺、零知识、证明、不可区分混淆、格基SNARKs)


On the vector subspaces of over which the multiplicative inverse function sums to zero

  • https://eprint.iacr.org/2024/1007

The Sum-Check Protocol over Fields of Small Characteristic

  • https://eprint.iacr.org/2024/1046

Constraint-Packing and the Sum-Check Protocol over Binary Tower Fields

  • https://eprint.iacr.org/2024/1038

A note on adding zero-knowledge to STARKs

  • https://eprint.iacr.org/2024/1037

A note on the G-FFT

  • https://eprint.iacr.org/2024/1036

Sparsity-Aware Protocol for ZK-friendly ML Models: Shedding Lights on Practical ZKML

Dong Mo 博士团队新做的一个 ZKML 的工作。主要讲的是通过 ternary network 可以将神经网络模型 (LLM之类)无损压缩和整数化,并且在这种简化的基础上面设计了一个叫 SpaGKR 的 ZK 算法,实现高效 ZKML inference。目前初步测下来能做到 100X 以上的速度提升,之后会补实验部分。

  • https://eprint.iacr.org/2024/1018

Accelerating pairings on BW10 and BW14 Curves

  • https://eprint.iacr.org/2024/1017

A Succinct Range Proof for Polynomial-based Vector Commitment

  • https://eprint.iacr.org/2024/1016




*感谢 Kurt、Xor0v0、Harry、Even、xz-cn 对本期 ZK Insights 的特别贡献

如果你对我们的 ZK Insights 感兴趣,或者有类似的内容分享想法,我们非常鼓励大家直接前往我们的 Github repo Pull Request,与有相同兴趣和爱好的 ZK-nerd 一起共创!
Github repo link:https://github.com/Antalpha-Labs/zk-insights
✨ 网页汇总版:https://zkinsights.z2o-k7e.world/ 
本期排版:Purple

Antalpha Labs 是一个非盈利的 Web3 开发者社区,致力于通过发起和支持开源软件推动 Web3 技术的创新和应用。

官网:https://labs.antalpha.com

Twitter:https://twitter.com/Antalpha_Labs

Youtube:https://www.youtube.com/channel/UCNFowsoGM9OI2NcEP2EFgrw

联系我们:hello.labs@antalpha.com

点击 阅读原文 共创下期 weekly

XPTY
寓形宇内复几时,曷不委心任去留?胡为乎遑遑欲何之?富贵非吾愿,帝乡不可期。怀良辰以孤往,或植杖而耘耔。登东皋以舒啸,临清流而赋诗。
 最新文章