ZK Insights | 10th Nov 2024

文摘   2024-11-10 23:59   泰国  

Highlights

Apple: Private Cloud Compute Security Guide

A new frontier for AI privacy in the cloud.

  • https://security.apple.com/documentation/private-cloud-compute/

SpaZK: 100X Faster Verifiable AI powered by Cross-stack ZKML Optimization

To enable practical ZKML, model simplification techniques like pruning and quantization should be applied. These simplification techniques not only condense complex models into forms with sparse, low-bit weight matrices, but also maintain exceptionally high model accuracies that matches its unsimplified counterparts. In this paper, we propose SpaGKR, a novel sparsity-aware ZKML framework that is proven to surpass capabilities of existing ZKML methods. SpaGKR is a general framework that is widely applicable to any computation structure where sparsity arises. When applying SpaGKR-LS to a special series of simplified model - ternary network, it achieves further efficiency gains by additionally leveraging the low-bit nature of model parameters. 为实现实用的 ZKML,需要采用剪枝和量化等模型简化技术。这些简化技术不仅能将复杂的模型压缩成稀疏、低比特权重矩阵的形式,还能保持极高的模型精度,与未简化的模型相媲美。在本文中,我们提出了一种新颖的稀疏感知 ZKML 框架 SpaGKR,它已被证明超越了现有 ZKML 方法的能力。SpaGKR 是一个通用框架,可广泛适用于出现稀疏性的任何计算结构。在将 SpaGKR-LS 应用于一系列特殊的简化模型--三元网络时,它通过额外利用模型参数的低位特性,进一步提高了效率。

  • https://brevisdotnetwork.wpcomstaging.com/2024/11/08/spazk-100x-faster-verifiable-ai-powered-by-cross-stack-zkml-optimization/
  • https://github.com/brevis-network/SpaZK

Sampling for Proximity and Availability

  • https://baincapitalcrypto.com/sampling-for-proximity-and-availability/

Getting started with MPC

Here's a short list of resources that are beginner friendly in terms of both books, papers and code Mikerah 的推荐 MPC 学习清单,适合初学者,包括书籍,论文和代码

  • https://x.com/badcryptobitch/status/1854947157628850263

Known Attacks On Elliptic Curve Cryptography

This article presents what elliptic curves are, the basic operations that can be performed on them, and how they can be used in cryptographic context. The majority of this article consists of examples of known attacks on incorrect implementations or wrong uses of them. Throughout the article I try to separate the explanation into an intuitive and high level part, and a mathematical part that goes into more details. 本文介绍了什么是椭圆曲线、在椭圆曲线上可以执行的基本操作,以及如何在加密环境中使用椭圆曲线。本文的大部分内容都是对椭圆曲线不正确实现或错误使用的已知攻击实例。在整篇文章中,我试图将解释分为直观和高层次的部分,以及深入细节的数学部分。另外仓库还配套了相应的 sage 示例代码。

  • https://github.com/elikaski/ECC_Attacks

Updates

Ceno: Non-uniform, Segment and Parallel Risc-V Zero-knowledge Virtual Machine

  • https://github.com/scroll-tech/ceno

libsecp256k1 v0.6.0: MuSig2 Support & Other Improvements

  • https://www.nobsbitcoin.com/libsecp256k1-v0-6-0/

Benefits of EOF (EVM Object Format) for Zero Knowledge Proofs

  • https://blog.succinct.xyz/eofbenefits/

o1js support secp256r1

  • https://github.com/o1-labs/o1js/pull/1885

Papers

Linear Proximity Gap for Reed-Solomon Codes within the 1.5 Johnson Bound

  • https://eprint.iacr.org/2024/1810

Foundations of Adaptor Signatures

  • https://eprint.iacr.org/2024/1809

Fast Two-party Threshold ECDSA with Proactive Security

  • https://eprint.iacr.org/2024/1831

Encrypted RAM Delegation: Applications to Rate-1 Extractable Arguments, Homomorphic NIZKs, MPC, and more

  • https://eprint.iacr.org/2024/1806

Smoothing Parameter and Shortest Vector Problem on Random Lattices

  • https://eprint.iacr.org/2024/1805

OPTIMSM: FPGA hardware accelerator for Zero-Knowledge MSM

  • https://eprint.iacr.org/2024/1827

Siniel: Distributed Privacy-Preserving zkSNARK

  • https://eprint.iacr.org/2024/1803

Honey I shrunk the signatures: Covenants in Bitcoin via 160-bit hash collisions

  • https://eprint.iacr.org/2024/1802

BrakingBase - a linear prover, poly-logarithmic verifier, field agnostic polynomial commitment scheme

  • https://eprint.iacr.org/2024/1825

VCVio: A Formally Verified Forking Lemma and Fiat-Shamir Transform, via a Flexible and Expressive Oracle Representation

  • https://eprint.iacr.org/2024/1819

Batching Adaptively-Sound SNARGs for NP

  • https://eprint.iacr.org/2024/1812

If you’d like to receive updates via email, click subscribe. Stay informed and never miss a post!

  • https://paragraph.xyz/@zkinsights


如果你重视零知识证明技术信息的实效性和信息源质量的意义,不想娱乐至死、短视投机、无关广告、推荐算法、劣币驱逐良币的泥沙裹挟迷失,请多支持我们(包括给予赞助支持),让这一汨清流继续流淌~



* 📮 邮箱订阅:https://paragraph.xyz/@zkinsights
* 感谢 Kurt、Miles、only4sim对本期 ZK Insights 的特别贡献!
 ZK Insights  Github repo Pull Request ZKPunk 
Github repo linkhttps://github.com/Antalpha-Labs/zk-insights
 https://insights.zkpunk.pro/ 
:Qijin

XPTY
寓形宇内复几时,曷不委心任去留?胡为乎遑遑欲何之?富贵非吾愿,帝乡不可期。怀良辰以孤往,或植杖而耘耔。登东皋以舒啸,临清流而赋诗。
 最新文章