ZK Insights | 14th July 2024

文摘   2024-07-15 10:59   中国香港  

Highlights

Avi Wigderson Turing Award Lecture: “Alan Turing: A TCS Role Model”

阿维-维格德森 (Avi Wigderson) 获得了 2023 年 ACM A.M. 图灵奖,以表彰他对计算理论做出的奠基性贡献,包括重塑了我们对随机性在计算中的作用的理解,以及他数十年来在理论计算机科学领域的知识领导地位。Wigderson 是新泽西州普林斯顿高等研究院数学学院的 Herbert H. Maass 教授。他在计算复杂性理论、算法与优化、随机性与密码学、并行与分布式计算、组合学、图论以及理论计算机科学与数学和科学之间的联系等领域一直处于领先地位。

  • https://www.youtube.com/watch?v=f2NiGO8zC1c

Peter Shor is the recipient of the 2025 Claude E. Shannon Award

The IEEE Information Theory Society is pleased to announce that Peter Shor is the recipient of the 2025 Claude E. Shannon Award for consistent and profound contributions to the field of information theory.

  • https://www.itsoc.org/news/shannon-award-2025

To Schnorr and beyond

马修·格林是约翰霍普金斯大学的教授和密码学家,他在下面的两篇博客里面详细的介绍了 Schnorr 签名系统模型、协议和数学原理,博客清晰且重点清晰。

  • https://blog.cryptographyengineering.com/2023/10/06/to-schnorr-and-beyond-part-1/
  • https://blog.cryptographyengineering.com/2023/11/30/to-schnorr-and-beyond-part-2/

Fiat-Shamir Heuristic

Zkproof 工作小组关于 Fiat-Shamir Heuristic 的标准化草案,草案作者是 CNRS 的 M. Orrù。草案简洁的定义了Fiat-Shamir Heuristic的接口、步骤和示例。

  • https://mmaker.github.io/stdsigma/draft-orru-zkproof-fiat-shamir.html

Sigma Protocols

关于 Sigma Protocols 的标准化草案,草案作者是 CNRS 的 M. Orrù 和 AIT 的 S. Krenn。草案状态是 Informational,已经包括了丰富的细节和示例。

  • https://mmaker.github.io/stdsigma/draft-orru-zkproof-sigma.html

Announcing AES-GEM (AES with Galois Extended Mode)

  • https://blog.trailofbits.com/2024/07/12/announcing-aes-gem-aes-with-galois-extended-mode/

Interactive Arithmetization and Iterative Constraint Systems

David,zkSecurity的联合创始人,也是《真实世界的密码学》一书的作者关于交互式算术和迭代约束系统的总结博客,同时包含了一系列相关介绍的链接。

  • https://cryptologie.net/article/615/interactive-arithmetization-and-iterative-constraint-systems/

STIR won Best Paper at CRYPTO 2024!

  • https://x.com/GiacomoFenzi/status/1809172872981536862

Understanding the point at infinity in Elliptic Curves

  • https://www.youtube.com/shorts/josvCacPz7w

“神秘”的密码学到底在学些什么?


The Phantom Zone

phantom-zone 是一个实验性的多方计算库,它使用多方完全同态加密来计算来自多方的私人输入的任意函数。目前,phantom-zone 的功能相当有限。它提供使用加密的 8 位无符号整数(称为 FheUint8)写入电路的功能,并且仅支持最多 8 方。FheUint8 支持与常规 uint8 相同的算法,介绍文档里面提到了一些例外情况。计划在未来将 API 扩展到其他有符号/无符号类型。

  • https://gauss.ing/blog/phantom-zone/

Privacy-preserving KYC

  • https://medium.com/@tisura/privacy-preserving-kyc-57002ab8d3f2

Proof of Twitter: ZK Email Demo

  • https://twitter.prove.email/

Hardhat ZKit

  • https://github.com/dl-solarity/hardhat-zkit

CryptoHack launched the ZKP section

  • https://cryptohack.org/challenges/zkp/

Ethereum Proofs - Noir Library Use Cases

  • https://www.vlayer.xyz/blog/ethereum-proofs-noir-library-use-cases

Blendy 🍹: a space-efficient sumcheck algorithm

  • https://github.com/compsec-epfl/space-efficient-sumcheck

Updates

ENCRYPT London 2024 (Playlist)

  • https://www.youtube.com/playlist?list=PLYQnwnLD-Fq1rYZYieFU5-mwCE2mMVprm

ZK and cryptography with Justin Thaler, Valeria Nikolaenko and Joseph Bonneau

  • https://www.youtube.com/watch?v=5RrSs8FswBo

The Man Who Solved the World’s Hardest Math Problem

  • https://www.youtube.com/watch?v=l6ev1lGq0B4

The Zombie Misconception of Theoretical Computer Science

  • https://scottaaronson.blog/?p=8106

Privado ID

  • https://www.privado.id/

CUDA Mini Course #3, presented by Hadar Sackstein, Algorithms Engineer at Ingonyama

  • https://www.youtube.com/watch?v=vhRfdMBANJ0

Now You Can Receive Crypto as Easily as an Email: The Mastermind Behind zkLogin - Kostas Kryptos

  • https://www.youtube.com/watch?v=NTypG0-PfrU

ETHGlobal Brussels (Video Playlist)

  • https://www.youtube.com/playlist?list=PLXzKMXK2aHh6G-EVZ4ZPy4w1bweZ1xDhq

BOUNDLESS by RISC Zero at EthCC Brussels, Belgium 2024

  • ZK Proofs in Action: Production-Ready Solutions for Real World Apps by Jeremy Bruestle
    • https://www.youtube.com/watch?v=Cl2L2dklLbk&list=PLcPzhUaCxlCgCvzkkaBWzVuHdBRsTNxj1&index=41
  • Interoperability From Coordinated Sequencing & ZK Proofs by Ben Fisch, Espresso Labs
    • https://www.youtube.com/watch?v=V3aIRUDp7eo&list=PLcPzhUaCxlCgCvzkkaBWzVuHdBRsTNxj1&index=43
  • NEBRA UPA: Proof Aggregation for privacy, scaling and interoperability By Shumo Chu
    • https://www.youtube.com/watch?v=_o7Lt46M7Gw&list=PLcPzhUaCxlCgCvzkkaBWzVuHdBRsTNxj1&index=47
  • The Endgame for Web3 by Zac Williamson
    • https://www.youtube.com/watch?v=dz-5e1cnsJU

Papers

【论文速递】CiC Vol. 1, Issue 2 (7篇)


【论文速递】ASIA CCS '24(隐私保护协议、后量子、密码学、去中心化系统、认证签名)


A Note on Efficient Computation of the Multilinear Extension

In this note we show how, given oracle access to and a point , to compute using field operations and only space.

  • https://eprint.iacr.org/2024/1103

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Introducing Ringtail, the most efficient 2-round lattice-based threshold signature from standard assumptions.

  • https://eprint.iacr.org/2024/1113

A Simple Post-Quantum Oblivious Transfer Protocol from Mod-LWR

  • https://eprint.iacr.org/2024/1116

Generic Anamorphic Encryption, Revisited: New Limitations and Constructions

  • https://eprint.iacr.org/2024/1119

Distributed Verifiable Random Function With Compact Proof

  • https://eprint.iacr.org/2024/1130

Jolt-b: recursion friendly Jolt with basefold commitment

  • https://eprint.iacr.org/2024/1131

Hadamard Product Argument from Lagrange-Based Univariate Polynomials

  • https://eprint.iacr.org/2024/613

Learnings

STARK 101

STARK 101 is a hands-on tutorial on how to write a STARK prover from scratch (in Python).

  • https://starkware.co/stark-101/

Quantum Computer Programming in 100 Easy Lessons

A beginner's course on basic quantum computing algorithms. Background required: basic knowledge of computer programming, probability, and geometry. Knowledge of linear algebra a plus.

  • https://www.youtube.com/playlist?list=PLm3J0oaFux3bF48kurxGR6jrmPaQf6lkN

zkSync Era Tutorial
  •  https://www.youtube.com/playlist?list=PLgPVMJY4tnFNK260S6thZqEAXJhtcgHaW




*感谢 Kurt、Xor0v0、Harry、权 对本期 ZK Insights 的特别贡献

如果你对我们的 ZK Insights 感兴趣,或者有类似的内容分享想法,我们非常鼓励大家直接前往我们的 Github repo Pull Request,与有相同兴趣和爱好的 ZK-nerd 一起共创!
Github repo link:https://github.com/Antalpha-Labs/zk-insights
✨ 网页汇总版:https://zkinsights.z2o-k7e.world/ 
本期排版:Purple

Antalpha Labs是一个非盈利的 Web3 开发者社区,致力于通过发起和支持开源软件推动 Web3 技术的创新和应用。

官网:https://labs.antalpha.com

Twitter:https://twitter.com/Antalpha_Labs

Youtube:https://www.youtube.com/channel/UCNFowsoGM9OI2NcEP2EFgrw

联系我们:hello.labs@antalpha.com

点击 阅读原文 共创下期 weekly

XPTY
寓形宇内复几时,曷不委心任去留?胡为乎遑遑欲何之?富贵非吾愿,帝乡不可期。怀良辰以孤往,或植杖而耘耔。登东皋以舒啸,临清流而赋诗。
 最新文章