数据分享|用户消费行为分析预测模型、重庆市的政策数据分析

科技   科技   2024-11-01 14:03   浙江  

原文链接:https://tecdat.cn/?p=34754

分析师:Xingyu Lan


企业想要发展必须掌握政策的动向本次研究把握政策的核心要点,利用Python强大的计算生态(pandas,Matplotlib,DataFrame,request_html.Butiful Soup,wordcloud等第三方库),实现对重庆地区政策数据的清洗,可视化以及自然文本分析点击文末“阅读原文”了解更多


相关视频



从中得到有效的企业政策趋势及特点,同时给不同类型企业提供分门别类的政策信息。

解决方案

任务/目标

根据重庆市的政策数据分析得到不同行业发展建议

特征转换

把不能处理的特征做一些转换,处理成算法容易处理的干净特征举例如下:

销售日期。就时间属性本身来说,对模型来说不具有任何意义,需要把日期转变成到年份,月份,日,周伪变量。

产品特征。从产品信息表里面可以得到款式,颜色,质地以及这款产品是否是限量版等。然而并没有这些变量。这就需要我们从产品名字抽取这款产品的上述特征。

以上例举的只是部分特征。

构造

数据中字段的展示:

技术细节


点击标题查阅往期内容


R语言主成分PCA、因子分析、聚类对地区经济研究分析重庆市经济指标


左右滑动查看更多


01

02

03

04



基于APP的用户数据分析

本研究是基于以APP用户数据查看文末了解数据免费获取方式,探讨各个变量对用户是否会下单购买课程的影响。并对已有用户数据的用户是否会下单购买产品进行预测。

解决方案

任务/目标

利用已知数据预测用户是否会下单购买APP产品。有用户信息表 (user_info.csv) ,用户登录情况表(login_day.csv),用户访问统计表(visit_info.csv),用户下单表(result.csv),利用数据对用户行为进行数据统计与分析:

数据源准备

在数据预处理时进行缺失值分析。


分析结果如下:

对于缺失值,我选择多重插补法进行缺失值进行3次插补。

特征转换

数据中有部分分类变量的字段,我根据不同变量的特性进行数值化。

数据可视化

ANN 神经网络预测用户是否购买产品

关于作者

在此对Xingyu Lan对本文所作的贡献表示诚挚感谢,他专注机器学习、数据采集、数据分析、爬虫领域。擅长Python、SPSS、MATLAB、Excel。



数据获取


在公众号后台回复“用户行为数”,可免费获取完整数据。






本文中分析的用户行为数据分享到会员群,扫描下面二维码即可加群!




点击文末“阅读原文”

了解更多


本文选自《数据分享|用户消费行为分析预测模型、重庆市的政策数据分析》。




点击标题查阅往期内容

数据分享|R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况
R语言是否对二分连续变量执行逻辑回归
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析
R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者
R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险
R语言用局部加权回归(Lowess)对logistic逻辑回归诊断和残差分析
R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
R语言用线性模型进行臭氧预测:加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值
R语言Bootstrap的岭回归和自适应LASSO回归可视化
R语言中回归和分类模型选择的性能指标
R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言计量经济学:虚拟变量(哑变量)在线性回归模型中的应用
R语言 线性混合效应模型实战案例
R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据
R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言建立和可视化混合效应模型mixed effect model
R语言LME4混合效应模型研究教师的受欢迎程度
R语言 线性混合效应模型实战案例
R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题
基于R语言的lmer混合线性回归模型
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言分层线性模型案例
R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型
使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据
用SPSS估计HLM多层(层次)线性模型模型
R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
R语言有RStan的多维验证性因子分析(CFA)
主成分分析(PCA)原理及R语言实现及分析实例
R语言无监督学习:PCA主成分分析可视化
R语言使用Metropolis- Hasting抽样算法进行逻辑回归
R语言多元Logistic逻辑回归 应用案例
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测
R语言基于树的方法:决策树,随机森林,Bagging,增强树
spss modeler用决策树神经网络预测ST的股票
R语言中自编基尼系数的CART回归决策树的实现
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
matlab使用分位数随机森林(QRF)回归树检测异常值
基于随机森林、svm、CNN机器学习的风控欺诈识别模型
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分


拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章