用回归和主成分分析PCA 回归交叉验证分析预测城市犯罪率数据

科技   科技   2024-11-13 16:57   浙江  

原文链接:http://tecdat.cn/?p=24671

在本文中,我解释了基本回归,并介绍了主成分分析 (PCA) 使用回归来预测城市中观察到的犯罪率。我还应用 PCA 创建了一个回归模型,用于使用前几个主成分对相同的犯罪数据进行建模。最后,我对两种模型的结果进行了比较,看看哪个表现更好。

回归有助于显示因素和因变量之间的关系,它基本上回答了两种类型的问题;1. 吸烟对癌症的影响 2. 未来会发生什么?(例如)三年后的油价。

数据

犯罪学家对惩罚制度对犯罪率的影响感兴趣。已使用汇总数据对此进行了研究。数据集包含以下列:

变量描述
M:  14-24岁的男性在总人口中的百分比
So:  南方的指标变量
Ed:  25岁或以上人口的平均受教育年限
Po1:年警察保护的人均支出
Po2:去年警察保护的人均支出
LF:14-24岁年龄组的城市男性平民的劳动力参与率
M.F:每100名女性的男性人数
Pop:国家人口,以十万计
NW:非白人在人口中的百分比
U1:14-24岁城市男性的失业率
U2:城市男性35-39岁的失业率
财富财富:可转让资产或家庭收入的中值
收入不平等:收入低于中位数一半的家庭的百分比
入狱概率:入狱人数与犯罪人数的比率
时间:罪犯在首次获释前在国家监狱中服刑的平均时间(月)。
犯罪:每10万人口中的犯罪数量

导入R环境

read("crim.txt")

检查变量是否正确

head(crim) #所有的变量都是预测因素,只有犯罪是因变量。

创建简单的回归模型

summary(model)

使用数据框架来手动创建我们的数据点测试,然后在测试数据上运行一些预测。

primodl <- predict(mdl, test)


输出值不到下一个最低城市的犯罪率的一半,所以我将创建第二个模型,观察它的输出并画出比较。

创建第二个模型

sumry(son_mel)

我们现在可以对第二个模型进行预测了

pic\_secn\_mel<- prict(sed_odel, tst)

pic\_secn\_mel

与第一个模型相比,其结果明显更高。所以,它更合理。

交叉验证

我们可以做一个5折的交叉验证。

cv(se,m=5)

我们可以得到数据和其平均值之间的平方差的总和



点击标题查阅往期内容


R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化


左右滑动查看更多


01

02

03

04




 sum((Cmmean(ui))^2)

我们可以得到模型1、模型2和交叉验证的平方残差之和

SSrl <- sum(res^2)

SSre <- sum(resi^2)

res <- "ms")*nrow

我们也可以计算出3个模型的R平方值

 1 -res/tot

1-res/SS

 1-res/SS

获得的R平方值表明我们的拟合质量很好。对于惩罚性回归,有必要对数据进行标准化,以确保所有的特征都受到同等的惩罚。但在线性回归的情况下,这其实并不重要。它将只是转移截距和系数,但相关关系保持不变。

PCA

PCA是一种用于描述变化的方法,显示数据集中的强相关性,从而使其易于探索和可视化数据。PCA通过以下方式对数据进行转换:(1)去除数据中的相关关系(2)按重要性对坐标进行排序。

我们可以检查crime数据的预测变量之间的相关性。

pairs(srm,c("o",Ed"o"))

对数据集中的所有预测变量应用PCA。请注意,为了获得更准确的PCA结果,需要对这些变量进行标准化。

sumr(pca)
rotan #PCA旋转是特征向量的矩阵
pca

然后,我们可以通过绘制每个主成分的方差来决定在 "前几个 "主成分中使用多少个主成分。

plotpcaye ="ie")

要确定使用多少PC?我们可以尝试使用5个主成分作为开始。

pcax\[,1:5\]

使用前五个PC,我们可以继续建立一个线性回归模型。

 summary(mdPCA)

为了根据原始变量重建模型,首先我们从PCA线性回归模型中获得系数,之后通过使用主成分的特征向量将PCA成分系数转化为原始变量的系数。

PCA线性回归的系数

coefficients\[1\]
coefficients\[2:6\]

 beta0 #截距

转换

rot %*% beta

 t(alpha) # 标准化的数据系数

获得未标准化数据的系数。

 ahusl <- ahs / sppy(u\[,1:15\],sd)

 ba0cl <- ea0 - sum/sapply(sd))

未标准化数据的系数

 t(alas_sled)

 be0uced

#我们可以得到我们的未标准化数据的估计值

as.marx %*% unscle + beta0aled

最后,为了比较使用PCA的模型和使用回归的模型的质量,我们必须计算R-squared和调整后的R-squared,并将这些数值与前一个模型的数值进行比较。调整后的R平方考虑了模型中预测因子的数量。

 Rsquared <- 1 - SSE/SST # R-squared

使用所有变量的无PCA的先前线性回归模型

 summary(dlLR)

R-squared 和调整后的 R-squared 值都较高,这表明至少对于使用前五个主成分的模型,具有 PCA 的线性回归模型优于没有 PCA 的线性回归模型。为了检查使用不同数量的前 n 个主成分的线性回归模型是否产生了更好的拟合模型,我们可以使用循环并进一步进行交叉验证。


 




本文摘选R语言回归和主成分PCA 回归交叉验证分析预测城市犯罪率数据》,点击“阅读原文”获取全文完整资料。





点击标题查阅往期内容

R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集
R语言有限混合模型(FMM,finite mixture model)EM算法聚类分析间歇泉喷发时间
R语言用温度对城市层次聚类、kmean聚类、主成分分析和Voronoi图可视化
R语言k-Shape时间序列聚类方法对股票价格时间序列聚类
R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
R语言复杂网络分析:聚类(社区检测)和可视化
R语言中的划分聚类模型
基于模型的聚类和R语言中的高斯混合模型
r语言聚类分析:k-means和层次聚类
SAS用K-Means 聚类最优k值的选取和分析
R语言k-Shape时间序列聚类方法对股票价格时间序列聚类
基于LDA主题模型聚类的商品评论文本挖掘
R语言中实现层次聚类模型
用R语言进行网站评论文本挖掘聚类
R语言鸢尾花iris数据集的层次聚类分析
R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归
R语言聚类算法的应用实例
基于模型的聚类和R语言中的高斯混合模型


欲获取全文文件,请点击左下角“阅读原文”。



欲获取全文文件,请点击左下角“阅读原文”。

拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章