Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析

科技   财经   2024-11-15 19:03   浙江  

全文链接:https://tecdat.cn/?p=33398


金融市场的股票价格时间序列分析一直以来都是投资者和研究者关注的主题之一。准确预测股票价格的趋势对于制定有效的投资策略和决策具有重要意义。因此,许多研究人员使用各种统计方法和模型来分析和预测股票价格的变动点击文末“阅读原文”获取完整代码数据

相关视频


本文的目标是帮助客户应用GARCH模型对ADBL(ABC Development Bank Limited)股票价格的时间序列进行分析和预测,并通过可视化分析的方式展示结果。ADBL是尼泊尔地区最大的商业银行之一,其股票价格波动对投资者和研究者来说具有重要意义。

首先,我们将收集ADBL股票价格的历史数据,并对其进行描述性统计和可视化分析,以获取对股票价格的初步认识。然后,我们将使用GARCH模型对ADBL股票价格的波动进行建模,并通过模型参数的估计和模型检验来验证模型的适应性。

接下来,我们将利用已建立的GARCH模型对ADBL股票价格的未来走势进行预测。预测结果将以图表和可视化方式呈现,以便读者更加直观地理解和分析。

最后,我们将对模型的预测效果进行评估,并讨论模型的局限性和未来研究的方向。通过本文的研究,我们希望为投资者和研究者提供一个有效的工具和方法,帮助他们更好地理解和预测ADBL股票价格的趋势。

导入库


# 广义自回归条件异方差(GARCH模型)


from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error


plt.rcParams['figure.figsize'] = (12,6)

这段代码的主要作用是导入所需的库和模块,为接下来的数据处理、图表绘制和模型评估等操作提供必要的工具和函数。

导入数据


# df = df[df['Date'] >= '2015-01-01']
df.head()


这段代码主要是导入数据并对数据进行处理的操作。具体而言,代码的功能如下:

  1. pd.read_csv('ADBL_data.csv'): 使用 pandas 库的 read_csv() 函数读取名为 "ADBL_data.csv" 的 CSV 文件,并将数据加载到一个名为 df 的数据框(DataFrame)中。

  2. df['Date'] = pd.to_datetime(df.Date): 将 df 数据框中的 "Date" 列转换为日期时间类型。这里使用 pd.to_datetime() 函数将日期字符串转换为日期时间格式。

  3. # df = df[df['Date'] >= '2015-01-01']: 这一行代码是对数据进行筛选的注释,表示根据日期进行过滤,只保留日期大于等于 "2015-01-01" 的数据。注释符号 # 表示该行代码不会被执行。

  4. df.head(): 打印输出 df 数据框的前几行数据,默认显示前5行。通过调用 head() 方法可以快速查看数据框的结构和内容。

综上所述,这段代码的作用是读取名为 "ADBL_data.csv" 的 CSV 文件,并将其加载到名为 df 的数据框中。然后对数据进行了格式转换并打印出前几行的数据。 

"ADBL的时间序列图"


plt.ylabel("Price")
plt.show()


点击标题查阅往期内容


R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析


左右滑动查看更多


01

02

03

04




df.reset_index(drop=True, inplace=True)
df

df.returns.plot() 

plt.show()

df.returns.describe()




# "平方股票收益的自相关图"
plot_acf(df.returns**2)
plt.show()

从ACF图中可以看出,在1个滞后时间步长内,方差存在显著的正相关关系。

识别 p 和 q

# 基于最小AIC确定的最佳p和q项
for p in range(1, 15):
for q in range(1, 15):
try:

print(f'GARCH order is ({p}, {q})')

 这段代码的主要功能是基于最小化赤池信息准则(AIC)来确定 GARCH 模型的最佳 p 和 q 值。具体而言,代码的执行过程如下:

  1. 创建一个空字典 dict_aic,用于保存每个不同 p 和 q 值组合对应的 AIC 值。

  2. 使用两个嵌套的循环遍历从 1 到 14 的所有整数值。外层循环控制 p 值的范围,内层循环控制 q 值的范围。

  3. 在每次循环迭代中,尝试构建一个 GARCH 模型,其中 vol 参数设为 'Garch',p 参数设为当前的外层循环变量 p,q 参数设为当前的内层循环变量 q。

  4. 如果成功拟合模型,则计算该模型的 AIC 值,并将其保存到 dict_aic 字典中对应的键值对中,键为 (p, q),值为 AIC 值。

综上所述,这段代码的作用是通过遍历多个 p 和 q 值的组合,并拟合 GARCH 模型来计算对应的 AIC 值。然后,基于最小 AIC 值确定最佳的 p 和 q 值,并输出结果。

训练/测试分割


# 将训练集和测试集按照70/30的比例分割
st.shape)

模型训练


model.summary()

 这段代码的目的是使用 GARCH 模型对训练数据进行拟合,并打印出模型的摘要信息。

具体而言,代码的执行流程如下:

  1. 创建一个 GARCH 模型对象并将其赋值给变量 model,其中 X_train 是作为训练数据的输入。vol='Garch' 表示使用 GARCH 方式进行建模。p 和 q 是 GARCH 模型中的参数,分别表示 ARCH 部分和 GARCH 部分的滞后阶数。

综上所述,这段代码的作用是创建一个 GARCH 模型对象并使用训练数据进行拟合,然后打印出模型的摘要信息,以便查看模型拟合的结果和相关统计指标。

测试集上的滚动预测

# 基于滚动测试集预测波动性。
forecasts = list()
for i in range(X_test.shape[0]):

forecasts.appe

这段代码的目的是基于滚动测试集预测波动性。

具体而言,代码的执行流程如下:

  1. 创建一个空列表 forecasts,用于保存每个时间点的波动性预测结果。

  2. 进行一个循环,循环次数根据测试数据的行数来确定,每次循环表示一个时间点的波动性预测。

  3. 在每次循环迭代中,首先获取用于预测的测试数据。通过 df.returns[:-(X_test.shape[0] - i)] 获取了从开始到当前循环迭代索引位置的训练数据。

  4. 创建一个 GARCH 模型对象,并将预测数据作为输入。模型对象中的 p 和 q 参数由之前确定的值指定。

综上所述,这段代码的作用是在每个时间点上,基于滚动的测试数据来预测波动性。通过一个循环,在每次循环迭代中,根据当前的训练数据来构建 GARCH 模型,并使用该模型进行波动性预测,将预测结果保存在 forecasts 列表中。

损失分析

from sklearn.metri

# 计算均方根误差

testScore = mean_sq

# 参考训练集最后一个指数的实际收盘价,根据预测收益生成收盘价
# 今日值 = 昨日值 + (pct_returns * 昨日值) / 100
pred_vals = []
for i in range(len(forecasts)):
if pred_vals:
pre

# 今日值 = 昨日值 + (pct_returns * 昨日值) / 100
testSco

date_range = df['Date'][-X_test.shape[0]:]


plt.title(
plt.legend(fontsize=14)
plt.show()

 



点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析》。




点击标题查阅往期内容

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言GARCH模型对股市sp500收益率bootstrap、滚动估计预测VaR、拟合诊断和蒙特卡罗模拟可视化
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
GARCH-DCC模型和DCC(MVT)建模估计
R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较
ARIMA、GARCH 和 VAR模型估计、预测ts 和 xts格式时间序列
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析
Garch波动率预测的区制转移交易策略
金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言GARCH建模常用软件包比较、拟合标准普尔SP 500指数波动率时间序列和预测可视化
Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测
R语言极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析
Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
R语言时间序列GARCH模型分析股市波动率
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略
R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
R语言多元Copula GARCH 模型时间序列预测
R语言使用多元AR-GARCH模型衡量市场风险
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言用Garch模型和回归模型对股票价格分析
GARCH(1,1),MA以及历史模拟法的VaR比较
matlab估计arma garch 条件均值和方差模型



拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章