基于小波分析的squeezenet网络时间序列分类MATLAB实战【含源码】

文摘   科技   2024-06-28 21:50   贵州  

    今天给大家分享基于小波分析的squeezenet网络时间序列分类MATLAB实战。需要了解更多算法代码的,可以点击文章左下角的阅读全文,进行获取哦~需要了解智能算法、机器学习、深度学习和信号处理相关理论的可以后台私信哦,下一期分享的内容就是你想了解的内容~

    本次实战使用连续小波变换(CWT)和squeezenet网络对人类心电图(ECG)信号进行分类。为加快训练速度,采用squeezenet网络进行迁移学习。对图像识别进行了预训练,以基于时频表示对ECG波形进行分类。本次使用的数据可从PhysioNet公开获得。

%%基于小波分析的squeezenet网络时间序列分类  clcclear%% 数据处理unzip(fullfile(tempdir,"physionet_ECG_data-main.zip"),tempdir)unzip(fullfile(tempdir,"physionet_ECG_data-main","ECGData.zip"), ...    fullfile(tempdir,"physionet_ECG_data-main"))load(fullfile(tempdir,"physionet_ECG_data-main","ECGData.mat"))parentDir = tempdir;dataDir = "data";helperCreateECGDirectories(ECGData,parentDir,dataDir)helperPlotReps(ECGData)%% Fs = 128;fb = cwtfilterbank(SignalLength=1000, ...    SamplingFrequency=Fs, ...    VoicesPerOctave=12);sig = ECGData.Data(1,1:1000);[cfs,frq] = wt(fb,sig);t = (0:999)/Fs;figurepcolor(t,frq,abs(cfs))set(gca,"yscale","log")shading interpaxis tighttitle("Scalogram")xlabel("Time (s)")ylabel("Frequency (Hz)")
%% helperCreateRGBfromTF(ECGData,parentDir,dataDir)
allImages = imageDatastore(fullfile(parentDir,dataDir), ... "IncludeSubfolders",true, ... "LabelSource","foldernames");
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,"randomized");disp("Number of training images: "+num2str(numel(imgsTrain.Files)))
disp("Number of validation images: "+num2str(numel(imgsValidation.Files)))%% 下载squeezenetsqz = squeezenet;
lgraphSqz = layerGraph(sqz);disp("Number of Layers: "+num2str(numel(lgraphSqz.Layers)))
lgraphSqz.Layers(1)lgraphSqz.Layers(end-5:end)
tmpLayer = lgraphSqz.Layers(end-5);newDropoutLayer = dropoutLayer(0.6,"Name","new_dropout");%% 修改squeezenet最后5层架构,实现模型迁移lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);
numClasses = numel(categories(imgsTrain.Labels));tmpLayer = lgraphSqz.Layers(end-4);newLearnableLayer = convolution2dLayer(1,numClasses, ... "Name","new_conv", ... "WeightLearnRateFactor",10, ... "BiasLearnRateFactor",10);lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);
tmpLayer = lgraphSqz.Layers(end);newClassLayer = classificationLayer("Name","new_classoutput");lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);
lgraphSqz.Layers(end-5:end)%% 数据增强augimgsTrain = augmentedImageDatastore([227 227],imgsTrain);augimgsValidation = augmentedImageDatastore([227 227],imgsValidation);%% 设置网络参数ilr = 3e-4;miniBatchSize = 10;maxEpochs = 15;valFreq = floor(numel(augimgsTrain.Files)/miniBatchSize);opts = trainingOptions("sgdm", ... MiniBatchSize=miniBatchSize, ... MaxEpochs=maxEpochs, ... InitialLearnRate=ilr, ... ValidationData=augimgsValidation, ... ValidationFrequency=valFreq, ... Verbose=1, ... Plots="training-progress");
trainedSN = trainNetwork(augimgsTrain,lgraphSqz,opts);trainedSN.Layers(end)
[YPred,probs] = classify(trainedSN,augimgsValidation);accuracy = mean(YPred==imgsValidation.Labels);disp("SqueezeNet Accuracy: "+num2str(100*accuracy)+"%")

完整代码
点击“阅读原文
获取

    部分知识来源于网络,如有侵权请联系作者删除~


    今天的分享就到这里了,后续想了解智能算法、机器学习、深度学习和信号处理相关理论的可以后台私信哦~希望大家多多转发点赞加收藏,你们的支持就是我源源不断的创作动力!


作 者 | 华 夏

编 辑 | 华 夏

校 对 | 华 夏


matlab学习之家
分享学习matlab建模知识和matlab编程知识
 最新文章