3)用原始序列减去均值包络线得到一个新的序列h(t),若满足emean(t)=0,并且在整个数据段内,极值点的个数与过零点的个数的差值必须小于或等于1,那么将h(t)作为一个IMF分量输出ci(t),若不能同时满足以上两个条件,那么将得到的序列作为新的x(t)分量,重复步骤1、步骤2和步骤3。
4)循环步骤1、步骤2和步骤3,如果无法分解出IMF,则退出循环,求余项r(t):
r(t)=x(t)-ci(t)
5)若余项r(t)不满足单调函数的要求,则将r(t)作为新的x(t)分量;若满足,停止分解,最终得到多个IMF和一个余项,可以表示为:
1.2 集成经验模态分解
集成经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)是EMD算法的改进,该算法通过添加辅助噪声,使序列数据的极值点均匀分布,得到符合信号特征的上下包络线,克服模态混叠效应,在多次的迭代中对分解的结果进行平均,以减少噪声对于结果的影响,有效克服了EMD中的模态混淆现象,有效抑制了高频噪声和异常事件的影响。
EEMD 主要由以下几个步骤组成:
添加白噪声: 在原始数据中加入一组不同幅度的白噪声。
使用 EMD 方法:对每一组加入噪声的数据应用 EMD,得到一系列的固有模态函数 (Intrinsic Mode Functions, IMFs)。
求平均:对所有噪声样本得到的相应 IMF 进行平均,以得到最终的 IMF。
EEMD 的优势在于它能够更有效地分解噪声干扰下的信号,并且对于模态混叠问题也有更好的表现。
1.3 完全自适应噪声集合经验模态分解
针对EMD算法分解信号存在模态混叠的问题,EEMD分解算法通过在待分解信号中加入成对正负高斯白噪声来减轻EMD分解的模态混叠。但是这种算法分解信号得到的本征模态分量中总会残留一定的白噪声,影响后续信号的分析和处理。完全自适应噪声集合经验模态分解(Complete EEMD with Adaptive Noise,CEEMDAN)为解决本征模态分量残留一定的白噪声而提出。
CEEMDAN 分解从两个方面解决了上述问题:
1)加入经 EMD 分解后含辅助噪声的 IMF 分量,而不是将高斯白噪声信号直接添加在原始信号中;
2) EEMD 分解和 CEEMD 分解是将经验模态分解后得到的模态分量进行总体平均,CEEMDAN 分解则在得到的第一阶 IMF分量后就进行总体平均计算,得到最终的第一阶 IMF分量,然后对残余部分重复进行如上操作,这样便有效地解决了白噪声从高频到低频的转移传递问题。
二、代码实战
clc
clear
load('sinusoidalSignalExampleData.mat','X','fs')
t = (0:length(X)-1)/fs;
figure(1)
plot(t,X)
xlabel('时间t/s')
%%EMD
[IMF,ORT,NB_ITERATIONS] = emd(X);
n = size(IMF,1);
figure(2)
for i = 1:n
subplot(5,2,i)
plot(t,IMF(i,:))
xlabel("时间t/s")
str1 = string(i);
str2 = "IMF";
ylabel([str2,str1])
end
%%EEMD
Nstd = 0.01;
NR = 10;
MaxIter = 1000;
[modes1 its1] = eemd(X,Nstd,NR,MaxIter);
n = size(modes1,1);
figure(3)
for i = 1:n
subplot(10,2,i)
plot(t,modes1(i,:))
xlabel("时间t/s")
str1 = string(i);
str2 = "IMF";
ylabel([str2,str1])
end
%%CEEMDAN
Nstd = 0.2;
NR = 10;
MaxIter = 1000;%Nstd/NR/MaxIter;可根据你的输入数据类型,查找相关文献参考
[modes2 its]=ceemdan(X,Nstd,NR,MaxIter);
n = size(modes2,1);
figure(4)
for i = 1:n
subplot(7,2,i)
plot(t,modes2(i,:))
xlabel("时间t/s")
str1 = string(i);
str2 = "IMF";
ylabel([str2,str1])
end
仿真结果:
原始信号:
EMD分解结果:
EEMD分解结果:
CEEMDAN分解结果:
完整代码回复
EMD及其改进算法
获取
附录EMD、EEMD、CEEMDAN代码:
%EMD computes Empirical Mode Decomposition
function [imf,ort,nbits] = emd(varargin)
[x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin{:});
if display_sifting
fig_h = figure;
end
%main loop : requires at least 3 extrema to proceed
while (~stop_EMD(r,MODE_COMPLEX,ndirs) && (k < MAXMODES+1 || MAXMODES == 0) && ~any(mask))
% current mode
m = r;
% mode at previous iteration
mp = m;
%computation of mean and stopping criterion
if FIXE
[stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
elseif FIXE_H
stop_count = 0;
[stop_sift,moyenne] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
else
[stop_sift,moyenne] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
end
% in case the current mode is so small that machine precision can cause
% spurious extrema to appear
if (max(abs(m))) < (1e-10)*(max(abs(x)))
if ~stop_sift
warning('emd:warning','forced stop of EMD : too small amplitude')
else
disp('forced stop of EMD : too small amplitude')
end
break
end
% sifting loop
while ~stop_sift && nbit<MAXITERATIONS
if(~MODE_COMPLEX && nbit>MAXITERATIONS/5 && mod(nbit,floor(MAXITERATIONS/10))==0 && ~FIXE && nbit > 100)
disp(['mode ',int2str(k),', iteration ',int2str(nbit)])
if exist('s','var')
disp(['stop parameter mean value : ',num2str(s)])
end
[im,iM] = extr(m);
disp([int2str(sum(m(im) > 0)),' minima > 0; ',int2str(sum(m(iM) < 0)),' maxima < 0.'])
end
%sifting
m = m - moyenne;
%computation of mean and stopping criterion
if FIXE
[stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
elseif FIXE_H
[stop_sift,moyenne,stop_count] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
else
[stop_sift,moyenne,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
end
% display
if display_sifting && ~MODE_COMPLEX
NBSYM = 2;
[indmin,indmax] = extr(mp);
[tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,mp,mp,NBSYM);
envminp = interp1(tmin,mmin,t,INTERP);
envmaxp = interp1(tmax,mmax,t,INTERP);
envmoyp = (envminp+envmaxp)/2;
if FIXE || FIXE_H
display_emd_fixe(t,m,mp,r,envminp,envmaxp,envmoyp,nbit,k,display_sifting)
else
sxp=2*(abs(envmoyp))./(abs(envmaxp-envminp));
sp = mean(sxp);
display_emd(t,m,mp,r,envminp,envmaxp,envmoyp,s,sp,sxp,sdt,sd2t,nbit,k,display_sifting,stop_sift)
end
end
mp = m;
nbit=nbit+1;
NbIt=NbIt+1;
if(nbit==(MAXITERATIONS-1) && ~FIXE && nbit > 100)
if exist('s','var')
warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'. stop parameter mean value : ',num2str(s)])
else
warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'.'])
end
end
end % sifting loop
imf(k,:) = m;
if display_sifting
disp(['mode ',int2str(k),' stored'])
end
nbits(k) = nbit;
k = k+1;
r = r - m;
nbit=0;
end %main loop
if any(r) && ~any(mask)
imf(k,:) = r;
end
ort = io(x,imf);
if display_sifting
close
end
end
%---------------------------------------------------------------------------------------------------
% tests if there are enough (3) extrema to continue the decomposition
function stop = stop_EMD(r,MODE_COMPLEX,ndirs)
if MODE_COMPLEX
for k = 1:ndirs
phi = (k-1)*pi/ndirs;
[indmin,indmax] = extr(real(exp(i*phi)*r));
ner(k) = length(indmin) + length(indmax);
end
stop = any(ner < 3);
else
[indmin,indmax] = extr(r);
ner = length(indmin) + length(indmax);
stop = ner < 3;
end
end
%---------------------------------------------------------------------------------------------------
% computes the mean of the envelopes and the mode amplitude estimate
function [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs)
NBSYM = 2;
if MODE_COMPLEX
switch MODE_COMPLEX
case 1
for k = 1:ndirs
phi = (k-1)*pi/ndirs;
y = real(exp(-i*phi)*m);
[indmin,indmax,indzer] = extr(y);
nem(k) = length(indmin)+length(indmax);
nzm(k) = length(indzer);
[tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,m,NBSYM);
envmin(k,:) = interp1(tmin,zmin,t,INTERP);
envmax(k,:) = interp1(tmax,zmax,t,INTERP);
end
envmoy = mean((envmin+envmax)/2,1);
if nargout > 3
amp = mean(abs(envmax-envmin),1)/2;
end
case 2
for k = 1:ndirs
phi = (k-1)*pi/ndirs;
y = real(exp(-i*phi)*m);
[indmin,indmax,indzer] = extr(y);
nem(k) = length(indmin)+length(indmax);
nzm(k) = length(indzer);
[tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,y,NBSYM);
envmin(k,:) = exp(i*phi)*interp1(tmin,zmin,t,INTERP);
envmax(k,:) = exp(i*phi)*interp1(tmax,zmax,t,INTERP);
end
envmoy = mean((envmin+envmax),1);
if nargout > 3
amp = mean(abs(envmax-envmin),1)/2;
end
end
else
[indmin,indmax,indzer] = extr(m);
nem = length(indmin)+length(indmax);
nzm = length(indzer);
[tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,m,m,NBSYM);
envmin = interp1(tmin,mmin,t,INTERP);
envmax = interp1(tmax,mmax,t,INTERP);
envmoy = (envmin+envmax)/2;
if nargout > 3
amp = mean(abs(envmax-envmin),1)/2;
end
end
end
%-------------------------------------------------------------------------------
% default stopping criterion
function [stop,envmoy,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs)
try
[envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
sx = abs(envmoy)./amp;
s = mean(sx);
stop = ~((mean(sx > sd) > tol | any(sx > sd2)) & (all(nem > 2)));
if ~MODE_COMPLEX
stop = stop && ~(abs(nzm-nem)>1);
end
catch
stop = 1;
envmoy = zeros(1,length(m));
s = NaN;
end
end
%-------------------------------------------------------------------------------
% stopping criterion corresponding to option FIX
function [stop,moyenne]= stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs)
try
moyenne = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
stop = 0;
catch
moyenne = zeros(1,length(m));
stop = 1;
end
end
%-------------------------------------------------------------------------------
% stopping criterion corresponding to option FIX_H
function [stop,moyenne,stop_count]= stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs)
try
[moyenne,nem,nzm] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
if (all(abs(nzm-nem)>1))
stop = 0;
stop_count = 0;
else
stop_count = stop_count+1;
stop = (stop_count == FIXE_H);
end
catch
moyenne = zeros(1,length(m));
stop = 1;
end
end
%-------------------------------------------------------------------------------
% displays the progression of the decomposition with the default stopping criterion
function display_emd(t,m,mp,r,envmin,envmax,envmoy,s,sb,sx,sdt,sd2t,nbit,k,display_sifting,stop_sift)
subplot(4,1,1)
plot(t,mp);hold on;
plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' before sifting']);
set(gca,'XTick',[])
hold off
subplot(4,1,2)
plot(t,sx)
hold on
plot(t,sdt,'--r')
plot(t,sd2t,':k')
title('stop parameter')
set(gca,'XTick',[])
hold off
subplot(4,1,3)
plot(t,m)
title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' after sifting']);
set(gca,'XTick',[])
subplot(4,1,4);
plot(t,r-m)
title('residue');
disp(['stop parameter mean value : ',num2str(sb),' before sifting and ',num2str(s),' after'])
if stop_sift
disp('last iteration for this mode')
end
if display_sifting == 2
pause(0.01)
else
pause
end
end
%---------------------------------------------------------------------------------------------------
% displays the progression of the decomposition with the FIX and FIX_H stopping criteria
function display_emd_fixe(t,m,mp,r,envmin,envmax,envmoy,nbit,k,display_sifting)
subplot(3,1,1)
plot(t,mp);hold on;
plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' before sifting']);
set(gca,'XTick',[])
hold off
subplot(3,1,2)
plot(t,m)
title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' after sifting']);
set(gca,'XTick',[])
subplot(3,1,3);
plot(t,r-m)
title('residue');
if display_sifting == 2
pause(0.01)
else
pause
end
end
%---------------------------------------------------------------------------------------
% defines new extrema points to extend the interpolations at the edges of the
% signal (mainly mirror symmetry)
function [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,x,z,nbsym)
lx = length(x);
if (length(indmin) + length(indmax) < 3)
error('not enough extrema')
end
% boundary conditions for interpolations :
if indmax(1) < indmin(1)
if x(1) > x(indmin(1))
lmax = fliplr(indmax(2:min(end,nbsym+1)));
lmin = fliplr(indmin(1:min(end,nbsym)));
lsym = indmax(1);
else
lmax = fliplr(indmax(1:min(end,nbsym)));
lmin = [fliplr(indmin(1:min(end,nbsym-1))),1];
lsym = 1;
end
else
if x(1) < x(indmax(1))
lmax = fliplr(indmax(1:min(end,nbsym)));
lmin = fliplr(indmin(2:min(end,nbsym+1)));
lsym = indmin(1);
else
lmax = [fliplr(indmax(1:min(end,nbsym-1))),1];
lmin = fliplr(indmin(1:min(end,nbsym)));
lsym = 1;
end
end
if indmax(end) < indmin(end)
if x(end) < x(indmax(end))
rmax = fliplr(indmax(max(end-nbsym+1,1):end));
rmin = fliplr(indmin(max(end-nbsym,1):end-1));
rsym = indmin(end);
else
rmax = [lx,fliplr(indmax(max(end-nbsym+2,1):end))];
rmin = fliplr(indmin(max(end-nbsym+1,1):end));
rsym = lx;
end
else
if x(end) > x(indmin(end))
rmax = fliplr(indmax(max(end-nbsym,1):end-1));
rmin = fliplr(indmin(max(end-nbsym+1,1):end));
rsym = indmax(end);
else
rmax = fliplr(indmax(max(end-nbsym+1,1):end));
rmin = [lx,fliplr(indmin(max(end-nbsym+2,1):end))];
rsym = lx;
end
end
tlmin = 2*t(lsym)-t(lmin);
tlmax = 2*t(lsym)-t(lmax);
trmin = 2*t(rsym)-t(rmin);
trmax = 2*t(rsym)-t(rmax);
% in case symmetrized parts do not extend enough
if tlmin(1) > t(1) || tlmax(1) > t(1)
if lsym == indmax(1)
lmax = fliplr(indmax(1:min(end,nbsym)));
else
lmin = fliplr(indmin(1:min(end,nbsym)));
end
if lsym == 1
error('bug')
end
lsym = 1;
tlmin = 2*t(lsym)-t(lmin);
tlmax = 2*t(lsym)-t(lmax);
end
if trmin(end) < t(lx) || trmax(end) < t(lx)
if rsym == indmax(end)
rmax = fliplr(indmax(max(end-nbsym+1,1):end));
else
rmin = fliplr(indmin(max(end-nbsym+1,1):end));
end
if rsym == lx
error('bug')
end
rsym = lx;
trmin = 2*t(rsym)-t(rmin);
trmax = 2*t(rsym)-t(rmax);
end
zlmax =z(lmax);
zlmin =z(lmin);
zrmax =z(rmax);
zrmin =z(rmin);
tmin = [tlmin t(indmin) trmin];
tmax = [tlmax t(indmax) trmax];
zmin = [zlmin z(indmin) zrmin];
zmax = [zlmax z(indmax) zrmax];
end
%---------------------------------------------------------------------------------------------------
%extracts the indices of extrema
function [indmin, indmax, indzer] = extr(x,t)
if(nargin==1)
t=1:length(x);
end
m = length(x);
if nargout > 2
x1=x(1:m-1);
x2=x(2:m);
indzer = find(x1.*x2<0);
if any(x == 0)
iz = find( x==0 );
indz = [];
if any(diff(iz)==1)
zer = x == 0;
dz = diff([0 zer 0]);
debz = find(dz == 1);
finz = find(dz == -1)-1;
indz = round((debz+finz)/2);
else
indz = iz;
end
indzer = sort([indzer indz]);
end
end
d = diff(x);
n = length(d);
d1 = d(1:n-1);
d2 = d(2:n);
indmin = find(d1.*d2<0 & d1<0)+1;
indmax = find(d1.*d2<0 & d1>0)+1;
% when two or more successive points have the same value we consider only one extremum in the middle of the constant area
% (only works if the signal is uniformly sampled)
if any(d==0)
imax = [];
imin = [];
bad = (d==0);
dd = diff([0 bad 0]);
debs = find(dd == 1);
fins = find(dd == -1);
if debs(1) == 1
if length(debs) > 1
debs = debs(2:end);
fins = fins(2:end);
else
debs = [];
fins = [];
end
end
if length(debs) > 0
if fins(end) == m
if length(debs) > 1
debs = debs(1:(end-1));
fins = fins(1:(end-1));
else
debs = [];
fins = [];
end
end
end
lc = length(debs);
if lc > 0
for k = 1:lc
if d(debs(k)-1) > 0
if d(fins(k)) < 0
imax = [imax round((fins(k)+debs(k))/2)];
end
else
if d(fins(k)) > 0
imin = [imin round((fins(k)+debs(k))/2)];
end
end
end
end
if length(imax) > 0
indmax = sort([indmax imax]);
end
if length(imin) > 0
indmin = sort([indmin imin]);
end
end
end
%---------------------------------------------------------------------------------------------------
function ort = io(x,imf)
% ort = IO(x,imf) computes the index of orthogonality
%
% inputs : - x : analyzed signal
% - imf : empirical mode decomposition
n = size(imf,1);
s = 0;
for i = 1:n
for j =1:n
if i~=j
s = s + abs(sum(imf(i,:).*conj(imf(j,:)))/sum(x.^2));
end
end
end
ort = 0.5*s;
end
%---------------------------------------------------------------------------------------------------
function [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin)
x = varargin{1};
if nargin == 2
if isstruct(varargin{2})
inopts = varargin{2};
else
error('when using 2 arguments the first one is the analyzed signal X and the second one is a struct object describing the options')
end
elseif nargin > 2
try
inopts = struct(varargin{2:end});
catch
error('bad argument syntax')
end
end
% default for stopping
defstop = [0.05,0.5,0.05];
opt_fields = {'t','stop','display','maxiterations','fix','maxmodes','interp','fix_h','mask','ndirs','complex_version'};
defopts.stop = defstop;
defopts.display = 0;
defopts.t = 1:max(size(x));
defopts.maxiterations = 2000;
defopts.fix = 0;
defopts.maxmodes = 0;
defopts.interp = 'spline';
defopts.fix_h = 0;
defopts.mask = 0;
defopts.ndirs = 4;
defopts.complex_version = 2;
opts = defopts;
if(nargin==1)
inopts = defopts;
elseif nargin == 0
error('not enough arguments')
end
names = fieldnames(inopts);
for nom = names'
if ~any(strcmpi(char(nom), opt_fields))
error(['bad option field name: ',char(nom)])
end
if ~isempty(eval(['inopts.',char(nom)])) % empty values are discarded
eval(['opts.',lower(char(nom)),' = inopts.',char(nom),';'])
end
end
t = opts.t;
stop = opts.stop;
display_sifting = opts.display;
MAXITERATIONS = opts.maxiterations;
FIXE = opts.fix;
MAXMODES = opts.maxmodes;
INTERP = opts.interp;
FIXE_H = opts.fix_h;
mask = opts.mask;
ndirs = opts.ndirs;
complex_version = opts.complex_version;
if ~isvector(x)
error('X must have only one row or one column')
end
if size(x,1) > 1
x = x.';
end
if ~isvector(t)
error('option field T must have only one row or one column')
end
if ~isreal(t)
error('time instants T must be a real vector')
end
if size(t,1) > 1
t = t';
end
if (length(t)~=length(x))
error('X and option field T must have the same length')
end
if ~isvector(stop) || length(stop) > 3
error('option field STOP must have only one row or one column of max three elements')
end
if ~all(isfinite(x))
error('data elements must be finite')
end
if size(stop,1) > 1
stop = stop';
end
L = length(stop);
if L < 3
stop(3)=defstop(3);
end
if L < 2
stop(2)=defstop(2);
end
if ~ischar(INTERP) || ~any(strcmpi(INTERP,{'linear','cubic','spline'}))
error('INTERP field must be ''linear'', ''cubic'', ''pchip'' or ''spline''')
end
%special procedure when a masking signal is specified
if any(mask)
if ~isvector(mask) || length(mask) ~= length(x)
error('masking signal must have the same dimension as the analyzed signal X')
end
if size(mask,1) > 1
mask = mask.';
end
opts.mask = 0;
imf1 = emd(x+mask,opts);
imf2 = emd(x-mask,opts);
if size(imf1,1) ~= size(imf2,1)
warning('emd:warning',['the two sets of IMFs have different sizes: ',int2str(size(imf1,1)),' and ',int2str(size(imf2,1)),' IMFs.'])
end
S1 = size(imf1,1);
S2 = size(imf2,1);
if S1 ~= S2
if S1 < S2
tmp = imf1;
imf1 = imf2;
imf2 = tmp;
end
imf2(max(S1,S2),1) = 0;
end
imf = (imf1+imf2)/2;
end
sd = stop(1);
sd2 = stop(2);
tol = stop(3);
lx = length(x);
sdt = sd*ones(1,lx);
sd2t = sd2*ones(1,lx);
if FIXE
MAXITERATIONS = FIXE;
if FIXE_H
error('cannot use both ''FIX'' and ''FIX_H'' modes')
end
end
MODE_COMPLEX = ~isreal(x)*complex_version;
if MODE_COMPLEX && complex_version ~= 1 && complex_version ~= 2
error('COMPLEX_VERSION parameter must equal 1 or 2')
end
% number of extrema and zero-crossings in residual
ner = lx;
nzr = lx;
r = x;
if ~any(mask) % if a masking signal is specified "imf" already exists at this stage
imf = [];
end
k = 1;
% iterations counter for extraction of 1 mode
nbit=0;
% total iterations counter
NbIt=0;
end
%---------------------------------------------------------------------------------------------------
function [modos its]=eemd(x,Nstd,NR,MaxIter)
--------------------------------------------------------------------------
in the same WARNING: this code needs to include
directoy the file emd.m developed by Rilling and Flandrin.
This file is available at %http://perso.ens-lyon.fr/patrick.flandrin/emd.html
We use the default stopping criterion.
We use the last modification: 3.2007
-------------------------------------------------------------------------
OUTPUT
in a matrix with the rows being the modes modos: contain the obtained modes
for each mode for each realization its: contain the iterations needed
INPUT
x: signal to decompose
Nstd: noise standard deviation
NR: number of realizations
MaxIter: maximum number of sifting iterations allowed.
-------------------------------------------------------------------------
Syntax
modos=eemd(x,Nstd,NR,MaxIter)
[modos its]=eemd(x,Nstd,NR,MaxIter)
-------------------------------------------------------------------------
if Nstd=0 and NR=1, the EMD decomposition is obtained. NOTE:
-------------------------------------------------------------------------
in EEMD was introduced
Wu Z. and Huang N.
"Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method".
in Adaptive Data Analysis. vol 1. pp 1-41, 2009. Advances
--------------------------------------------------------------------------
in The present EEMD implementation was used
M.E.TORRES, M.A. COLOMINAS, G. SCHLOTTHAUER, P. FLANDRIN,
"A complete Ensemble Empirical Mode decomposition with adaptive noise,"
IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-11, pp. 4144-4147, Prague (CZ)
in order to compare the performance of the new method CEEMDAN with the performance of the EEMD.
-------------------------------------------------------------------------
Date: June 06,2011
Authors: Torres ME, Colominas MA, Schlotthauer G, Flandrin P.
For problems with the code, please contact the authors:
To: macolominas(AT)bioingenieria.edu.ar
CC: metorres(AT)santafe-conicet.gov.ar
-------------------------------------------------------------------------
This version was run on Matlab 7.10.0 (R2010a)
--------------------------------------------------------------------------
desvio_estandar=std(x);
x=x/desvio_estandar;
xconruido=x+Nstd*randn(size(x));
[modos, o, it]=emd(xconruido,'MAXITERATIONS',MaxIter);
modos=modos/NR;
iter=it;
if NR>=2
for i=2:NR
xconruido=x+Nstd*randn(size(x));
[temp, ort, it]=emd(xconruido,'MAXITERATIONS',MaxIter);
temp=temp/NR;
lit=length(it);
[p liter]=size(iter);
if lit<liter
it=[it zeros(1,liter-lit)];
end;
if liter<lit
iter=[iter zeros(p,lit-liter)];
end;
iter=[iter;it];
[filas columnas]=size(temp);
[alto ancho]=size(modos);
diferencia=alto-filas;
if filas>alto
modos=[modos; zeros(abs(diferencia),ancho)];
end;
if alto>filas
temp=[temp;zeros(abs(diferencia),ancho)];
end;
modos=modos+temp;
end;
end;
its=iter;
modos=modos*desvio_estandar;
function [modes its]=ceemdan(x,Nstd,NR,MaxIter)
% WARNING: for this code works it is necessary to include in the same
%directoy the file emd.m developed by Rilling and Flandrin.
%This file is available at %http://perso.ens-lyon.fr/patrick.flandrin/emd.html
%We use the default stopping criterion.
%We use the last modification: 3.2007
%
% This version was run on Matlab 7.10.0 (R2010a)
%----------------------------------------------------------------------
% INPUTs
% x: signal to decompose
% Nstd: noise standard deviation
% NR: number of realizations
% MaxIter: maximum number of sifting iterations allowed.
%
% OUTPUTs
% modes: contain the obtained modes in a matrix with the rows being the modes
% its: contain the sifting iterations needed for each mode for each realization (one row for each realization)
% -------------------------------------------------------------------------
% Syntax
%
% modes=ceemdan(x,Nstd,NR,MaxIter)
% [modes its]=ceemdan(x,Nstd,NR,MaxIter)
%
%--------------------------------------------------------------------------
% This algorithm was presented at ICASSP 2011, Prague, Czech Republic
% Plese, if you use this code in your work, please cite the paper where the
% algorithm was first presented.
% If you use this code, please cite:
%
% M.E.TORRES, M.A. COLOMINAS, G. SCHLOTTHAUER, P. FLANDRIN,
% "A complete Ensemble Empirical Mode decomposition with adaptive noise,"
% IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-11, pp. 4144-4147, Prague (CZ)
%
% -------------------------------------------------------------------------
% Date: June 06,2011
% Authors: Torres ME, Colominas MA, Schlotthauer G, Flandrin P.
% For problems with the code, please contact the authors:
% To: macolominas(AT)bioingenieria.edu.ar
% CC: metorres(AT)santafe-conicet.gov.ar
% -------------------------------------------------------------------------
x=x(:)';
desvio_x=std(x);
x=x/desvio_x;
modes=zeros(size(x));
temp=zeros(size(x));
aux=zeros(size(x));
acum=zeros(size(x));
iter=zeros(NR,round(log2(length(x))+5));
for i=1:NR
white_noise{i}=randn(size(x));%creates the noise realizations
end;
for i=1:NR
modes_white_noise{i}=emd(white_noise{i});%calculates the modes of white gaussian noise
end;
for i=1:NR %calculates the first mode
temp=x+Nstd*white_noise{i};
[temp, o, it]=emd(temp,'MAXMODES',1,'MAXITERATIONS',MaxIter);
temp=temp(1,:);
aux=aux+temp/NR;
iter(i,1)=it;
end;
modes=aux; %saves the first mode
k=1;
aux=zeros(size(x));
acum=sum(modes,1);
while nnz(diff(sign(diff(x-acum))))>2 %calculates the rest of the modes
for i=1:NR
tamanio=size(modes_white_noise{i});
if tamanio(1)>=k+1
noise=modes_white_noise{i}(k,:);
noise=noise/std(noise);
noise=Nstd*noise;
try
[temp, o, it]=emd(x-acum+std(x-acum)*noise,'MAXMODES',1,'MAXITERATIONS',MaxIter);
temp=temp(1,:);
catch
it=0;
temp=x-acum;
end;
else
[temp, o, it]=emd(x-acum,'MAXMODES',1,'MAXITERATIONS',MaxIter);
temp=temp(1,:);
end;
aux=aux+temp/NR;
iter(i,k+1)=it;
end;
modes=[modes;aux];
aux=zeros(size(x));
acum=zeros(size(x));
acum=sum(modes,1);
k=k+1;
end;
modes=[modes;(x-acum)];
[a b]=size(modes);
iter=iter(:,1:a);
modes=modes*desvio_x;
its=iter;