这个小清新统计可视化工具太赞了~~

教育   2025-01-17 17:43   黑龙江  

来  源:DataCharm/作  者:宁俊骐

最近小编在查阅资料的时候发现一个超喜欢的可视化绘制工具-R-smplot,本来想着忙完这段时间给大家直播的时候再系统介绍,但随着对这个工具的学习,还是决定现在就推荐给大家。好了,话不多说,我们直接开始,今天推文的主要内容如下:

  • R-smplot包简单介绍

  • R-smplot包案例介绍


R-smplot包简单介绍

R-smplot包,sm为simple(简单) 的简称,意为使R进行可视化过程变得简单,而且R-smplot包还完美兼容ggplot2绘图语法,熟悉ggplot2绘图的小伙伴可以快速上手。此外,该包还提供多个绘图函数:

  • 多个偏向于统计绘图的函数,如sm_boxplot() 和 sm_violin() 函数;

  • 多个映射颜色,如:sm_color() 和 sm_palette() ;

  • 多个绘图主题,如sm_corr_theme()sm_minimal() 等,

  • 还提供大量常见的绘图函数,如sm_bland_altman() 、sm_raincloud() 、和sm_common_axis() 函数。


R-smplot包案例介绍

这一部分,小编通过具体的绘制示例给大家介绍smplot包优秀的绘图函数、映射颜色和绘图主题,让小伙伴们对这个可视化包有所了解,详细内容如下:

R-smplot包映射颜色介绍

S-smplot包提供了非常“小清新”的颜色映射函数,这里直接给出样式,如下:

smplot’s color palette

R-smplot包映绘图主题介绍

R-smplot包提供的绘图主题也是非常多,下面就依次绘制不同主题的可视化效果:

  • ggplot2默认主题

library(smplot)
library(tidyverse)
library(ggtext)
library(hrbrthemes)
# ggplot2默认主题
p1 <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = class)) + 
  geom_point(size = 2)
ggplot2默认主题


  • sm_corr_theme()

p1 + sm_corr_theme()
sm_corr_theme()


还可以在主题基础上进行修改和选择映射颜色:

p2 <- p1 + sm_corr_theme(borders = FALSE, legends = FALSE) +
  scale_color_manual(values = sm_palette(7))
sm_corr_theme() set


  • sm_minimal()

p1 + sm_minimal()
sm_minimal()


  • sm_slope_theme()

p1 + sm_slope_theme()
sm_slope_theme()


R-smplot包常见绘图函数介绍

这一部分,小编列举出R-smplots包的常见绘图函数,如下:


「详细内容如下:」

  • sm_statCorr()

p1 <- ggplot(data = mtcars, mapping = aes(x = drat, y = mpg)) +
  geom_point(shape = 21, fill = sm_color('green'), color = 'white', size = 3) 
p1 + sm_corr_theme() + 
  sm_statCorr(color = sm_color('green'),
               line_type = 'solid',
               label_x = 3.5,
               label_y = 30,
               text_size = 5)
sm_statCorr() example


  • sm_bar()

set.seed(11) # generate random data
method1 = c(rnorm(19,0,1),2.5)
method2 = c(rnorm(19,0,1),2.5)
Subject <- rep(paste0('S',seq(1:20)), 2)
Data <- data.frame(Value = matrix(c(method1,method2),ncol=1))
Method <- rep(c('Method 1''Method 2'), each = length(method1))
df_general <- cbind(Subject, Data, Method) 

# 可视化
ggplot(data = df_general, mapping = aes(x = Method, y = Value, fill = Method)) +
  sm_bar(shape = 21, color = 'white', bar_fill_color = 'gray80') +
  scale_fill_manual(values = sm_color('crimson','green'))

sm_bar() Example


  • sm_boxplot()

set.seed(1) # generate random data
day1 = rnorm(16,0,1)
day2 = rnorm(16,5,1)
Subject <- rep(paste0('S',seq(1:16)), 2)
Data <- data.frame(Value = matrix(c(day1,day2),ncol=1))
Day <- rep(c('Day 1''Day 2'), each = length(day1))
df <- cbind(Subject, Data, Day)
# 可视化
ggplot(data = df, mapping = aes(x = Day, y = Value)) +
  sm_boxplot(fill = 'black')
sm_boxplot Example01

此外,还可以进行修改:

ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Day)) +
  sm_boxplot(shape = 21, point_size = 4, notch = 'TRUE', alpha = 0.5) +
  scale_fill_manual(values = sm_color('blue','orange'))
sm_boxplot Example02


  • sm_violin()

ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Subject,
                                group = Day, color = Day)) +
  sm_violin(shape = 21, color = 'white', point_alpha = 0.6) + 
  scale_fill_manual(values = sm_palette(16)) +
  scale_color_manual(values = sm_color('blue''orange'))

sm_violin() Example


  • sm_slope()

ggplot(data = df, mapping = aes(x = Day, y = Value, group = Subject)) +
  sm_slope(labels = c('Day 1''Day 2'))

sm_slope() Example


  • sm_bland_altman()

set.seed(1)
first <- rnorm(20)
second <- rnorm(20)
df3 <- as_tibble(cbind(first,second))
res <- sm_statBlandAlt(df3$first,df3$second)
sm_bland_altman(df3$first, df3$second, shape = 21, fill = sm_color('green'), color = 'white') + 
  scale_y_continuous(limits = c(-4,4)) +
  annotate('text', label = 'Mean', x = -1, y = res$mean_diff + 0.4) +
  annotate('text', label = signif(res$mean_diff,3), x = -1, y = res$mean_diff - 0.4) +
  annotate('text', label = 'Upper limit', x = 1.2, y = res$upper_limit + 0.4) +
  annotate('text', label = signif(res$upper_limit,3), x = 1.2, y = res$upper_limit - 0.4) +
  annotate('text', label = 'Lower limit', x = 1.2, y = res$lower_limit + 0.4) +
  annotate('text', label = signif(res$lower_limit,3), x = 1.2, y = res$lower_limit-0.4)

sm_bland_altman() Example


  • sm_raincloud()

set.seed(2) # generate random data
day1 = rnorm(20,0,1)
day2 = rnorm(20,5,1)
day3 = rnorm(20,6,1.5)
day4 = rnorm(20,7,2)
Subject <- rep(paste0('S',seq(1:20)), 4)
Data <- data.frame(Value = matrix(c(day1,day2,day3,day4),ncol=1))
Day <- rep(c('Day 1''Day 2''Day 3''Day 4'), each = length(day1))
df2 <- cbind(Subject, Data, Day)
#可视化
sm_raincloud(data = df2, x = Day, y = Value, boxplot_alpha = 0.5, 
              color = 'white', shape = 21, sep_level = 2) +
  scale_x_continuous(limits = c(0.25,4.75), labels = c('1''2''3''4'), breaks = c(1,2,3,4)) +
  xlab('Day') +
  scale_color_manual(values = rep('transparent',4)) + 
  scale_fill_manual(values = sm_palette(4))

sm_raincloud() Example


到这里,关于R-smplot包的绘图功能就简单介绍了一下。

总结

今天介绍的这个优秀的可视化工具R-smplot包功能还是非常强大的,通过介绍也可以看出该包更倾向于统计绘图,这也是我们在绘制学术图表常用的图表类型,希望小伙伴们可以学习一下~


- END -

本文为转载分享&推荐阅读,若侵权请联系后台删除


爱数据福利大放送


《数据可视化图表选择指南》

扫描/识别下方二维码

回复【1026】即可领取


数据可视化图表选择指南部分内容





点击【阅读原文】测一测你适合做数据分析吗?

爱数据LoveData
国内领先数据分析社区,专注数据分析知识分享及求职辅导。爱数据作为一线数据厂商(帆软、观远、永洪等)培训合作伙伴,曾联合阿里、美团、滴滴等一线公司开展数据领域专题分享会。积累10年+行业经验,链接千人数据分析高端人脉,累计服务15w+用户。
 最新文章