地表局部地形对地震波的传播有显著影响,当地震波遇到高山、峡谷等,会产生散射波、入射波和反射波等复杂波场,并引起地面运动的放大或衰减,称为地形效应。目前针对地形效应已有了相应的研究,主要包含了数值模拟和解析分析两种。解析主要运用的是波函数展开法,Wong等[1]提出了半圆形峡谷对地震SH波散射的波函数级数解,随后众多学者提出了多种圆弧形峡谷的解析解[2-6],Gao等[7]提出了通过坐标变换求解V形对称峡谷引起的圆柱形SH波二维散射和衍射波函数的级数解。数值方法包含了有限差分法[8],谱元法等[9]等,数值方法可实现复杂地形地震波传播模拟,具备边界和复杂几何处理的灵活性,但在计算精度方面往往需要解析解的校准。
近场波动在数学上可归结为偏微分方程的初值、边值问题,偏微分方程的数值离散化在模拟多物理场问题方面取得了很大的进展,但通过使用经典的分析或计算工具来建模和预测非线性多尺度系统的演化较困难,面对复杂网络剖分、参数化偏微分方程控制的高维问题等。
近年来的研究发现,物理信息神经网络(PINN)可以用于对控制物理系统的偏微分方程进行建模,通过嵌入物理信息解决了传统神经网络算法对于求解方面的局限性,例如高度依赖数据驱动,缺乏物理可解释性、易陷入过拟合以及可获取数据的稀疏性等。PINN方法仅依赖于少量甚至零标记的数据集,并实现数据稀缺、物理约束的学习。嵌入物理公式为可训练参数提供约束,缓解过拟合问题,减少对大型训练数据集的需求,从而提高训练模型的鲁棒性,以实现可靠的预测。Raissi等[10]利用深度学习神经网络(DNN)的强表达性,开发了通用PINN框架,解决了涉及小数据集甚至没有任何标记数据的非线性偏微分方程系统的正逆问题。最近几年PINN方法在地球物理学[11-13]、固体力学[14-16]、流体动力学[17-20]、热传导[21-22]等方面有了相应的研究。众多学者针对不同的偏微分方程,让PINN方法更好地适应不同的物理问题[23-29]。也有了少数利用物理信息神经网络求解波动方程的工作,Rao等[19]通过DNN复合方案以硬嵌入的方式强制满足初值、边值条件,在截断域的波传播问题上进行了模拟。陈苏等[30]结合了数值模拟原理和物理驱动深度学习建立了波动模拟方法,提出了可以提高网络训练效率的迁移学习方法。
在前人研究的基础上,提出通过物理信息神经网络模拟圆柱形SH波在不规则地形下的散射和衍射方法。通过新的参数加载代理建模策略,在给定初始时刻稀疏地震位移波场,模拟地震波在半无限域的传播,通过对比解析解和PINN预测解来评估所提出的规则地形下PINN模型的性能。通过PINN模型模拟不规则地形下圆柱形SH波的二维散射和衍射,证明该方法具有良好的泛化性。
通过物理信息驱动神经网络(PINN)的自动微分功能求解了二维波动方程,并计算了柱面SH波在对称V型峡谷下的反射和散射。通过与解析值的对比,验证了PINN方法在求解波动问题上的精度。得到3点结论。
(1)物理驱动深度学习(PINN)方法可通过稀疏初始波场数据,模拟柱面SH波在对称V型峡谷下的反射和散射,具备“无网格、强耦合”等特性,可适应不同地形与波源。
(2)对比不同工况的训练结果,发现越靠近地表位置,波场叠加越复杂,相对误差范数也会越大。且同一模型下,相对范数误差与柱面SH波的主频关系不大。
(3)对比不同工况下解析与PINN预测的地表峰值位移大小关系,柱面SH波在V型峡谷底端发生衰减现象,在其他位置发生放大现象。其中在V型峡谷边缘处放大现象最明显,且PINN方法在预测低频SH波在峡谷处地形效应时更为准确。
全文阅读 (拓展出版内容见网页的资源附件)
《岩土工程学报》2024年第6期全文阅读
本刊官网:www.cgejournal.com提供本刊创刊以来所有论文免费阅读下载!另提供岩土工程方面技术和产品的宣传推广服务,电话025-85829543