基于Janus-MoSSe和C3N4构建的范德华异质结中的可调节能带排列和光学特性

文摘   2024-05-26 08:44   北京  



背景简介

具有可调节能带排列的范德华异质结被认为是未来制造高性能多功能纳米光电器件的理想候选材料。在半导体与半导体结合构建的异质结构中具有多种能带排列方式,包括I型(跨接)、II 型(交错)以及 III 型(断隙)。I 型异质结构中的电子和空穴都位于同一种半导体材料中,这将有利于载流子的快速复合,这一特性使得I型异质结通常用于发光器件中。而在II型异质结构中,电子和空穴则位于不同的半导体材料,这种空间上的分离能够有效抑制载流子的复合并延长层间激子寿命,因而在太阳能器件中得到广泛应用。对于III型异质结构,由于两种半导体材料的价带和导带相互重叠,导致III型异质结构具有更高的电子隧穿概率。因此,实现异质结构的可调节能带排列是制造高性能的多功能纳米光电器件的前提。然而,目前大多采用调节异质结构的构成层成分或者厚度的方法来实现能带排列方式的变化,显然这些方法难以在实验中实现。


研究内容

由于具有 S 原子和 Se 原子两个不同的表面,因此 Janus-MoSSe 两表面的电势并不相同。基于 MoSSe 的这种特性并考虑 C3N4 相对 MoSSe 的不同旋转角度,通过结合能的计算获得最稳定的 MoSSe/C3N4(C3N4-Se)和 C3N4/MoSSe(C3N4-S)异质结构,并进行相关性质的研究。研究表明,由于两种异质结构内建电场强度的不同(图1c-d)导致构成层的能带边缘位移的差异(图2),MoSSe/C3N4 异质结构呈现出I型能带排列特征,这将适用于发光器件中,C3N4/MoSSe 异质结构呈现出II型能带排列特征,这将有利于载流子的分离并在太阳能器件中具有较大应用潜力。相较于目前调控异质结构能带排列方式的手段,这种通过切换异质结构堆叠方式来实现的方法,将更容易在实验中实现。此外,这两种异质结构的能带排列方式可以通过外加电场进行调节,即在I型和II型能带排列之间转换。另一方面,两种异质结构在原始状态下的主要吸收峰都位于可见光区(~2.9eV),通过施加正(负)方向电场,吸收峰的峰值可以得到增强(减弱),这一特征使得 MoSSe/C3N4 和 C3N4/MoSSe 异质结构可以应用于光调制器中。这些研究结果表明,MoSSe/C3N4 和 C3N4/MoSSe 异质结构在多功能电子器件(包括发光器件、太阳能器件、光调制器等)中具有巨大的应用潜力。


图1  MoSSe/C3N4 和 C3N4/MoSSe 异质结构的(a-b)层相关的投影电子能带结构和(c-d)沿z方向的有效势。


图2  MoSSe/C3N4 和 C3N4/MoSSe 异质结构的能带排列和功函数示意图。ΦW、Evac 和EF 分别表示功函数、真空能级和费米能级。真空能级设置为零。


总结

基于 Janus-MoSSe 的面外不对称性,将 C3N4 分别放置在MoSSe 的不同侧面构建出 MoSSe/C3N4(C3N4-Se)和 C3N4/MoSSe(C3N4-S)异质结构,以此希望通过更为简便的方法实现异质结构能带排列方式的转换和更强的光学性能。由于 MoSSe 两侧原子的势能差异,两种异质结构的内建电场强度并不相同,导致其构成层能带边缘的位移程度也存在差异,最终 MoSSe/C3N4 和 C3N4/MoSSe 异质结构分别呈现I型和II型能带排列。此外,施加一定的外加电场可以进一步调节这两种异质结构的层间电荷转移,使其在I型和II型能带排列方式之间转换,并能较大程度调节其带隙。在光学性质方面,两种异质结构在可见光区域具有宽而高的光学吸收峰,并且采用外加电场可以调节光学吸收峰的峰值。以上结果使用 QuantumATK 软件中的第一性原理计算获得。我们的研究将有助于 MoSSe/C3N4 和 C3N4/MoSSe 异质结构在多功能器件中的进一步发展。


参考

  • Tunable band alignment and optical properties in van der Waals heterostructures based on two-dimensional materials Janus-MoSSe and C3N4. New J. Phys. 26 043014 (2024).

    https://iopscience.iop.org/article/10.1088/1367-2630/ad3c65

点击“阅读原文


费米科技
分享费米科技产品相关教程、最新应用案例
 最新文章