特刊征稿 | 数据驱动方法在岩土与结构工程中的前沿进展

学术   2024-11-19 08:30   辽宁  








期刊介绍

AI in Civil Engineering Journal《智能建造》期刊是由教育部主管、同济大学主办的国际全英文开放获取期刊(CN:31-2183/TU,ISSN:2097-0943,E-ISSN: 2730-5392,本刊是全球首本重点关注土木工程与人工智能交叉融合的智能建造领域国际前沿性综合性专属期刊,已入选中国科技期刊卓越行动计划高起点新刊。


期刊网址

https://www.springer.com/journal/43503

投稿网址

https://www.editorialmanager.com/aice/default2.aspx

特刊征稿


特刊名称

Advancements in Geotechnical and Structural Engineering through Data-Driven Approaches

《数据驱动方法在岩土与结构工程中的前沿进展》


特刊介绍

Data-driven approaches involve the utilization of technologies such as big data, data analysis, and machine learning to collect, organize, analyze, and explore extensive datasets, aiming to guide decision-making, enhance processes, or deliver improved products and services. Within the realm of engineering, the application of data-driven methodologies assists researchers in comprehending system behaviors, forecasting potential issues, and devising solutions, thus enhancing engineering efficiency, safety, and sustainability.
In-depth exploration of the application of data-driven methodologies in geotechnical and structural engineering facilitates the provision of more precise and efficient solutions for engineering practice.  Geotechnical and structural engineering pertain to the design, construction, and maintenance of both underground and above-ground structures, with their safety and reliability being paramount for the stability of societal infrastructure. Conventional methodologies often rely on empirical knowledge and theoretical models; however, when confronted with complex geological and structural systems along with extensive observational data, these approaches frequently exhibit limitations.
In today’s increasingly digitized era, data-driven methodologies present unprecedented opportunities for the fields of geotechnical and structural engineering by leveraging large-scale datasets and machine learning algorithms.  These methodologies enable a deeper comprehension and prediction of the intricate phenomena within geotechnical and structural engineering, consequently furnishing engineering practice with solutions that are more precise and efficient. This special issue will concentrate on exploring the application of these methodologies across diverse domains, as well as the challenges and opportunities they engender. 

数据驱动方法通过使用大数据、数据分析和机器学习等技术,来收集、组织、分析和探索庞大的数据集,以支持决策制定、流程优化或提供更优质的产品和服务。在土木工程领域,数据驱动方法的应用可以帮助研究人员更好地理解系统行为、预测潜在问题,并提出相应的解决方案,从而提升工程的效率、安全性和可持续性。
深入探讨数据驱动方法在岩土工程和结构工程中的应用,有助于为土木工程实践提供更精确和高效的解决方案。岩土和结构工程涉及地下和地面结构的设计、施工和维护,而这些结构的安全性和可靠性对于社会基础设施的稳定性至关重要。传统方法通常依赖于经验知识和理论模型;然而,当面对复杂的地质条件和结构系统以及海量观测数据时,这些方法往往显现出局限性,难以应对非线性、动态变化等复杂问题。
在当今数字化加速发展的背景下,数据驱动方法为岩土工程和结构工程带来了前所未有的机遇。通过整合大规模数据集和机器学习算法,这些方法使工程人员能够更深入地理解和预测岩土和结构工程中复杂的非线性现象,例如土壤行为、结构健康监测、施工过程优化等。因此,数据驱动方法为土木工程实践提供了更高精度和更高效的解决方案,显著提升了工程设计与管理的科学性与智能化水平。
本特刊将聚焦于数据驱动方法在岩土与结构工程的多领域应用,以及它们带来的挑战与机遇。特别关注机器学习、深度学习等技术在土木工程中的前沿应用,包括基于图像处理的损伤检测、基于传感器数据的结构健康监测、以及通过大数据分析优化施工流程等。这些新兴方法有望显著提升土木工程的安全性和可持续性,推动传统工程学科的数字化转型。


征文主题

The guest editors are calling for paper submissions to this special issue to be published in journal of AI in Civil Engineering. The proposed special issue will comprise, primarily, invited contributions on the topic of “Advancements in Civil Engineering through Data-Driven Approaches”. The objective of the proposed special issue will be to present recent advances and to discuss current and emerging multi-disciplinary approaches in the field of engineering informatics. Consequently, this special issue seeks to present the latest advancements covering a broad range of topics, including but not restricted to


我们诚挚邀请各位学者和工程师在《智能建造》期刊的特刊《数据驱动方法在土木工程中的前沿进展》上投稿。在该特刊中,该特刊的目标是展示近期的进展,并讨论当前和新兴的跨学科方法在土木工程信息学领域中的应用。因此,本特刊旨在展示最新的进展,涵盖广泛的主题,包括但不限于以下内容:

  • AI-powered structural health monitoring and maintenance optimization
  • Data-driven uncertainty quantification and sensitivity analysis in engineering
  • Physics-informed neural networks (PINNs) for advanced analysis in geotechnical and structural engineering
  • PINN-based Optimization for Improved Performance in Engineering Applications
  • AI-enabled life cycle assessment and sustainable engineering solutions
  • Harnessing data-driven methods for enhanced risk assessment and management in geotechnical and structural engineering
  • AI-guided Finite Element Analysis 

  • 基于人工智能的结构健康监测与维护优化
  • 工程中的数据驱动不确定性量化与敏感性分析
  • 物理信息神经网络(PINNs)在岩土工程和结构工程中的高级分析
  • 基于PINN的优化方法提升工程应用性能
  • 人工智能支持的生命周期评估与可持续工程解决方案
  • 利用数据驱动方法增强岩土工程和结构工程中的风险评估与管理
  • 人工智能引导的有限元分析

专刊特约编辑



Prof. Timon Rabczuk

Affiliation: Bauhaus- University Weimar

Biography: Timon Rabczuk is the Chair Professor of Computational Mechanics and Vice President of Bauhaus- University Weimar, member of the European Academy of Sciences and Arts, member of Europea Academia. Prof. Rabczuk obtained his PhD degree from KIT in Germany in 2002 which is followed by a 4-year postdoc in Northwestern University in the US working with the late Prof. Ted Belytschko. He has been working as research fellow in Technical University of Munich in Germany and senior lecturer in Canterbury University in New Zealand before he is apointed as Chair Professor in 2009 in Weimar, Germany. His key research area is computational mechanics, advanced computational materials design and AI for mechanics. He has so far published 3 academic monographs, 5 book chapters in Encyclopedia of Computational Mechanics, Encyclopedia of Aerospace Engineering, over 700 SCI papers, with H-Index of 111, attracting over 44000 times citations in Web of Science core collection.






Dr. Hongwei Guo

Affiliation: Beijing University of Technology

Biography: Hongwei Guo is a research fellow at Beijing University of Technology. His research focuses on applying artificial intelligence (AI) in civil engineering by integrating AI with numerical analysis to address critical issues, such as poor interpretability, limited reasoning capabilities, and difficulties in analyzing complex civil engineering scenarios in existing machine learning models. His research encompasses developing intelligent simulation methods with high robustness and generalizability, designing new materials, and conducting interpretable data mining in civil engineering. He has published 30 papers in SCI-indexed journals, six of which have been selected as ESI highly cited papers.


投稿方式


请您将稿件投递至网址:https://www.editorialmanager.com/aice/default2.aspx

在投稿中的“Additional Information Page”页面,您将被问及“Are you submitting this manuscript to a Thematic Series?”,届时请您从下拉菜单中选择选择 “yes" 在下拉菜单中选择特刊题目 "Advancements in Geotechnical and Structural Engineering through Data-Driven Approaches ",以确保您的稿件被正确投递至本特刊。


截止日期

请在2025年11月01日之前完成投稿,如您对于本期特刊有任何问题,或者有投稿或审稿方面的问题,请联系期刊编辑部邮箱aice@tongji.edu.cn






© Copyright

AICE 智能建造 | 转载请联系授权




Springer
作为全球领先的科学、技术、医学和人文社科出版机构,Springer 拥有超过2900种期刊和290,000本图书,致力于为学术界、科研机构和企业研究人员提供高质量的内容。欢迎关注 Springer,了解学术出版、科研进展以及作者服务。
 最新文章