去年我们发布的《芯片设计五部曲》,还挺受欢迎的:
不少人辗转问过我们下一集什么时候出。
放心,我们不鸽。
前几集我们已经分别深入了模拟IC和数字IC的设计过程,展开了解了算法仿真的四大特性,以及结合EDA工具特性和原理,如何利用计算机技术提高模拟与数字芯片的研发设计效率。
就像我们在模拟IC篇讲的:射频芯片作为模拟电路王冠上的明珠,一直被认为是芯片设计中的“华山之巅”。隐藏在其设计过程中的取舍与权衡,完全值得单开一篇。
射频芯片
不是你想象中的射频芯片
RFIC应用领域有:移动通信、卫星通信、雷达系统、射频识别(RFID)、传感器等。
而在高频影响下,所有的器件都是电阻、电感和电容的组合,存在寄生参数。
同样一根导线,在射频领域,导线不能被识别成导线,存在趋肤效应,即在频率很高的时候,电流在导线内部不是均匀流动的,会集中在导线的表面,中心部分基本没有电流通过。
随着电子技术的发展,电路的集成度和工作频率不断提高,如何利用更先进的电磁场仿真技术,精确预测和分析寄生参数对电路性能的影响,是射频设计工程师们的重要课题之一。
射频IC设计 VS 模拟IC设计
看起来只差一步,其实大不相同
一颗射频芯片的完整设计流程如下:
看起来只多了一小步,但却是芯片设计工程师们的一大步。
01
工程师知识与能力储备
为啥?
从知识储备角度
模拟工程师主要学习模拟集成电路、信号系统与高数/物理相关知识。
教授说:“All of them. Believe me, all of them.”答案是,每一门。
从经验能力来说
这也是为什么很多射频IC设计公司都是IDM(Integrated Design and Manufacture,垂直整合制造)模式,因为需要多种不同的生产工艺,与foundry厂的生产链各环节紧密关联,门槛相当高。
02
电路物理模型
模拟芯片属于集总参数电路,是一种常用的简化电路模型。它将电路中的元件抽象为等效的电阻、电容和电感等参数,以简化的形式描述了复杂电路的行为,减少了繁琐的计算步骤。
适用于描述低频电路或电路中信号波长远大于电路尺寸的情况,是麦克斯韦尔方程在低频电路中的特解。
公式一般长这样,看着是能让人算出来的样子:
射频芯片属于分布参数电路,它将元件建模为具有空间分布的电阻、电容和电感。
分布参数电路考虑了电路中元件在电路中的位置因素,可以更准确地描述信号传输过程中的相位、功率损耗等因素;也考虑了电路中各个导线和元件之间的长度影响,即电流或信号在空间上的分布变化。
适用于描述高频电路或电路中信号波长大于等于电路尺寸、频率特性受传输线长度影响较为显著的情况。
03
仿真计算特性
但每一个任务进行的都是瞬态仿真,用于分析电路在特定时间段内电压和电流的变化趋势,仿真结果跟上一个时间的状态相关,是个串行的过程。
单纯求微分方程数值解,数据量相对较小,主频敏感,计算并行受限较大。
在时域分析上,计算量大,在频域上计算量小。
无论是对不同频域的取点,还是有限元法的切割,天然具备多线程与分布式优势,适用并行计算,存在大量SIMD指令(即单指令多数据运算,其目的就在于帮助CPU实现数据并行,提高运算效率)。
张量计算,数据量大,算力需求高。
常用工具ADS,有针对AVX512指令集优化。
因为是求解空间问题,所以部分工具可用GPU。
三种电磁场仿真技术
FEM/MoM/FDTD
近些年,主要有三种电磁仿真技术:FEM有限元分析、MoM 2.5D矩量法和FDTD有限时域差分法。
原则上,他们都能解决相同的问题,但却有各自更适合的场景。
01
FEM有限元分析
这种算法将整个几何模型划分为大量四面体,每一个四面体都是由四个等边三角形组成。也就是说,整个目标空间被划分为N个较小的区域,并用局部函数表示每个子区域中的场。
所有端口激励只需要一个矩阵求解。
通常用于复杂3D结构的求解,整体消耗仿真资源大,仿真速度慢。
02
MoM 2.5D矩量法
FEM有限元分析是一个三元方程组,计算量很大。
而MoM(Method of Moments)2.5D矩量法,是专门针对3D层状结构出的优化算法。它根据半导体平面工艺的结构,做了一定数学上的简化和等价,把三个未知数简化成两个未知数,加快了求解速度。
所有端口激励只需要一个矩阵求解。
因此,MoM矩量法不适用于一般的三维结构,主要适用求解3D层状结构,常用于片上无源器件。
03
FDTD有限时域差分
FDTD(Finite Difference Time Domain)有限时域差分法,跟FEM一样,也是真正的3D场求解器,可以分析任何形状的3D结构。
FDTD通常使用六面体网格单元(也就是“Yee”单元),对微分形式的Maxwell方程在时域进行求解,当前时刻的电场磁场矢量值由结构中前一时刻的电场磁场值以及它们的变化情况直接计算得出。
必须为几何N端口设计上的每个端口运行一次仿真。
小结
MoM仿真速度会更快,但是FEM的应用范围更广更灵活。
如果待求解的结构是“平面”或者说层状结构,可以优先使用MoM仿真,提高设计效率。比如PCB互连、片上无源器件以及互连和平面天线。
射频_电磁场仿真工具
HFSS/ADS/EMX
电磁场模拟已经越来越成为射频电路设计人的必备技能之一。尤其是专门为射频和微波电路分析而开发的计算机辅助工具的使用,让射频芯片工程师能够获得前所未有的仿真能力。
当然,这并不意味着有了工具就能解决电磁仿真问题,前面已经反复说了,RFIC设计对经验要求非常高。但通过使用更高效的电磁仿真工具,工程师可以相对低成本地验证设计概念,或在仿真中融入更完整更真实的数据,减少外部条件限制。
01
HFSS
HFSS,是世界上第一款商业化的3D电磁仿真软件,堪称电磁场仿真业界标杆,现在属于Ansys公司。
但通用也就意味着没有强针对性,HFSS把一套叫做有限元分析的数学方法应用在了电磁学领域,当然,也可以应用在其他工程领域。因为没有对芯片设计领域做专门优化,软件交互方面不够友好。
如果要界定领域的话,HFSS比较难评,既可以放到CAE领域,也可以放到EDA领域。一般而言,在智能制造/汽车制造场景下用HFSS进行电磁场仿真更多,当然,也可以用于部分芯片设计场景。
02
ADS
ADS和EMX就不一样了,是纯粹的EDA领域工具,在处理芯片设计场景的电磁场仿真使用较为广泛。
ADS,属于Keysight是德科技,针对射频芯片电路有专门的优化和研发,既可以做三维电磁场仿真,也可以针对PCB布局和部分集成电路设计场景。Keysight跟各大元器件厂商都有广泛合作,可以提供最新的Design Kit供用户使用。
ADS适合对片上的电路/元器件做分析仿真,适用小规模RF/MMIC设计,如果需要模拟一个大的模块,HFSS可能更合适。
MoM适用于层状结构,而使用FEM或FDTD方法时可以适用任意3D结构。
在电磁与射频的设计中,经常需要通过HFSS设计天线,然后通过ADS来验证电路,这个时候就需要两者的联合仿真,以S参数作为中继。
早期,ADS占据绝对主导地位,Foundry厂会提供基于ADS的PDK文件,现在逐渐也开始提供基于EMX的工艺文件。
03
EMX
EMX是专门针对射频集成电路设计开发的,作为EDA常用工具Cadence的插件存在,能与TA无缝集成,对工程师们极为友好。
三种射频芯片电磁场仿真工具对比
关于我们在各种EDA应用上的表现,可以点击以下应用名称查看:
HSPICE │ OPC │ VCS │ Virtuoso │ Calibre │ HFSS
更多半导体用户案例,可以戳下方查看:
青芯 │ 浙桂 │ 燧原 │ 普冉 │ Alpha Cen │ 深职大
- END -