在模仿中精进数据可视化_R语言实现扇形图自由
❝
在模仿中精进数据可视化
该系列推文中,我们将从各大顶级学术期刊的Figure
入手,
解读文章的绘图思路,
模仿文章的作图风格,
构建适宜的绘图数据,
并且将代码应用到自己的实际论文中。
绘图缘由:小伙伴们总会展示出一些非常好看且精美的图片。我大概率会去学习和复现一下。其实每个人的时间和精力都非常有限和异常宝贵的。之所以我会去做,主要有以下原因:
图片非常好看,我自己看着也手痒痒 图片我自己在Paper也用的上,储备着留着用 保持了持续学习的状态
❝感谢俊哥的
jjPlot
完全可以实现扇形图自由。
不过我还在尝试实现扇形图的其他展示方法。
今天的推文仅仅是做一个扇形图的小demo。
直接上代码:
加载R
包
rm(list = ls())
####----load R Package----####
library(tidyverse)
library(readxl)
library(ggalt)
library(jjPlot)
library(RColorBrewer)
加载数据
####----load Data----####
df <- read_xlsx(path = "test_df.xlsx", col_names = T) %>%
dplyr::mutate(Gene = factor(Gene, levels = Gene, ordered = T)) %>%
na.omit() %>%
tidyr::pivot_longer(cols = -Gene, names_to = "Type", values_to = "Value")
可视化
####----Plot----####
p <- ggplot() +
geom_jjpie(data = df %>%
dplyr::filter(Type == "Type1") %>%
dplyr::mutate(Value = scale(Value)),
aes(x = Gene, y = "Type1", piefill = Value, fill = Value),
width = 2) +
geom_jjpie(data = df %>%
dplyr::filter(Type == "Type2") %>%
dplyr::mutate(Value = scale(Value)),
aes(x = Gene, y = "Type2", piefill = Value, fill = Value),
width = 2) +
geom_jjpie(data = df %>%
dplyr::filter(Type == "Type3") %>%
dplyr::mutate(Value = scale(Value)),
aes(x = Gene, y = "Type3", piefill = Value, fill = Value),
width = 2) +
geom_jjpie(data = df %>%
dplyr::filter(Type == "Type4") %>%
dplyr::mutate(Value = scale(Value)),
aes(x = Gene, y = "Type4", piefill = Value, fill = Value),
width = 2) +
scale_fill_gradientn(colours = brewer.pal(11, "RdYlBu")) +
labs(x = "", y = "") +
theme_bw() +
theme(
plot.background = element_blank(),
axis.line.y.left = element_line(linewidth = 0.5),
axis.ticks.length.theta = unit(10, "pt"),
axis.text = element_text(size = 8)
)
p
ggsave(filename = "plot.pdf",
plot = p,
height = 4,
width = 10)
版本信息
####----sessionInfo----####
sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS 14.6.1
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Asia/Shanghai
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] RColorBrewer_1.1-3 ggalt_0.4.0 readxl_1.4.3 reshape2_1.4.4
[5] jjPlot_0.0.3 lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1
[9] dplyr_1.1.4 purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
[13] tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] ash_1.0-15 utf8_1.2.4 generics_0.1.3 proj4_1.0-13
[5] KernSmooth_2.23-22 stringi_1.8.3 extrafontdb_1.0 hms_1.1.3
[9] magrittr_2.0.3 grid_4.3.0 timechange_0.2.0 maps_3.4.1.1
[13] cellranger_1.1.0 plyr_1.8.9 fansi_1.0.6 scales_1.3.0
[17] textshaping_0.3.7 cli_3.6.3 rlang_1.1.4 crayon_1.5.2
[21] munsell_0.5.1 withr_3.0.1 tools_4.3.0 tzdb_0.4.0
[25] colorspace_2.1-1 vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4
[29] MASS_7.3-60 ragg_1.2.6 pkgconfig_2.0.3 pillar_1.9.0
[33] gtable_0.3.5 glue_1.7.0 Rcpp_1.0.13 systemfonts_1.1.0
[37] tidyselect_1.2.1 rstudioapi_0.15.0 farver_2.1.2 extrafont_0.19
[41] labeling_0.4.3 Rttf2pt1_1.3.12 compiler_4.3.0
历史绘图合集
进化树合集
环状图
散点图
基因家族合集
换一个排布方式:
首先查看基础版热图:
然后再看进阶版热图:
基因组共线性
WGCNA ggplot2版本
其他科研绘图
合作、联系和交流
有很多小伙伴在后台私信作者,非常抱歉,我经常看不到导致错过,请添加下面的微信联系作者,一起交流数据分析和可视化。