2024年诺贝尔生理学或医学奖揭晓!两位科学家因microRNA相关工作获奖!

科技   2024-10-07 18:36   英国  

北京时间 2024 年 10 月 7 日下午 5 点 30 分许,2024 年诺贝尔生理学或医学奖重磅公布,维克托·安布罗斯(Victor Ambros)加里·鲁夫昆(Gary Ruvkun)发现微小RNA(microRNA)及其在转录后基因调控中的作用”而摘得桂冠。


获奖理由:

表彰他们发现 microRNA 及其在转录后基因调控中的作用。


for the discovery of microRNA and its role in post-transcriptional gene regulation.



年的诺贝尔奖表彰了两位科学家,他们发现了一项关于基因活性如何调控的基本原理。


维克托·安布罗斯(Victor Ambros)

维克托·安布罗斯1953年出生于美国新罕布什尔州汉诺威,1979年获得麻省理工学院博士学位,1979年至1985年在麻省理工学院做博士后研究,1985年成为哈佛大学的首席研究员,1992年至2007年担任达特茅斯医学院的教授,现为马萨诸塞大学医学院伍斯特分校的Silverman自然科学教授。


加里·鲁夫昆(Gary Ruvkun)

加里·鲁夫昆1952年出生于美国加利福尼亚州伯克利,1982年获得哈佛大学博士学位,1982年至1985年在麻省理工学院做博士后研究,1985年成为麻省总医院和哈佛医学院的首席研究员,现为哈佛医学院的遗传学教授。


储存在我们染色体中的信息可以被比作我们身体所有细胞的操作手册。每个细胞都含有相同的染色体,因此每个细胞也拥有完全相同的基因组和指令集。然而,不同的细胞类型,如肌肉细胞和神经细胞,具有非常不同的特征。这些差异是如何产生的呢?答案在于基因调控,它允许每个细胞只选择相关的指令。这确保了每种细胞类型中只有正确的基因集是活跃的。

Victor Ambros 和 Gary Ruvkun 对不同细胞类型如何发育产生了兴趣。他们发现了微小RNA,这是一类在基因调控中发挥重要作用的全新的小RNA分子。他们的突破性发现揭示了一种全新的基因调控原理,这种原理对于包括人类在内的多细胞生物来说至关重要。现在已知,人类基因组编码了超过一千种微小RNA。他们令人惊讶的发现为基因调控揭示了一个全新的维度。微小RNA被证明对生物体的发育和功能起着根本性的作用。

关键的调控

今年的诺贝尔奖聚焦于细胞中用于控制基因活性的重要调控机制的发现。遗传信息通过称为转录的过程从DNA流向信使RNA(mRNA),然后进入细胞机器进行蛋白质合成。在那里,mRNA被翻译,以便根据存储在DNA中的遗传指令合成蛋白质。自20世纪中期以来,一些最基本的科学发现解释了这些过程是如何运作的。

我们的器官和组织由许多不同类型的细胞组成,它们的DNA中都储存着相同的遗传信息。然而,这些不同的细胞表达出独特的蛋白质组。这是如何实现的呢?答案在于对基因活性的精确调控,使得每种特定的细胞类型中只有正确的基因组处于活跃状态。这使得肌肉细胞、肠道细胞和不同类型的神经细胞等能够执行各自的专门功能。此外,基因活性必须不断地进行微调,以使细胞功能适应我们身体和环境中不断变化的条件。如果基因调控出现问题,可能导致癌症、糖尿病或自身免疫等严重疾病。因此,理解基因活性的调控多年来一直是一个重要的目标。


遗传信息从DNA到mRNA再到蛋白质的流动。我们体内所有细胞的DNA中都储存着相同的遗传信息。这需要对基因活性进行精确的调控,以确保在每种特定的细胞类型中只有正确的基因集是活跃的。

在20世纪60年代,研究表明,称为转录因子的特化蛋白可以与DNA中的特定区域结合,通过决定哪些mRNA被生成来控制遗传信息的流动。从那时起,科学家们发现了数千种转录因子,长期以来,人们认为基因调控的主要原理已经得到了解决。然而,1993年,今年的诺贝尔奖得主发表了出人意料的研究成果,描述了一种全新的基因调控水平,这种调控机制在进化过程中具有重要意义且被高度保守。

对一种小型线虫的研究引发了重大突破

在20世纪80年代末,Victor Ambros和Gary Ruvkun在Robert Horvitz的实验室担任博士后研究员,Horvitz于2002年与Sydney Brenner和John Sulston共同获得了诺贝尔奖。在Horvitz的实验室中,他们研究了一种长度仅为1毫米的相对不起眼的线虫——小蠕虫秀丽隐杆线虫(C. elegans)。尽管其体型微小,秀丽隐杆线虫具有许多复杂生物体中也存在的特化细胞类型,如神经细胞和肌肉细胞,使其成为研究多细胞生物组织如何发育和成熟的有用模型。Ambros和Ruvkun对控制不同遗传程序激活时间的基因产生了兴趣,以确保各种细胞类型在正确的时间发育。他们研究了两种突变线虫品系,lin-4和lin-14,这些线虫在发育过程中遗传程序的激活时间上显示出缺陷。诺奖得主希望识别出这些突变基因并了解其功能。Ambros此前已表明lin-4基因似乎是lin-14基因的负调控因子。然而,lin-14的活性如何被抑制仍然未知。Ambros和Ruvkun对这些突变体及其潜在关系深感兴趣,并着手解决这些谜团。

(A) 秀丽隐杆线虫(C. elegans)是理解不同细胞类型如何发育的有用模型生物。(B) Ambros和Ruvkun研究了lin-4和lin-14突变体。Ambros已经表明lin-4似乎是lin-14的负调控因子。(C) Ambros发现lin-4基因编码了一种不编码蛋白质的微小RNA(微小RNA)。Ruvkun克隆了lin-14基因,两位科学家发现lin-4微小RNA序列与lin-14 mRNA中的互补序列相匹配。

在完成博士后研究后,Victor Ambros在他新成立的哈佛大学实验室中分析了lin-4突变体。通过系统的基因图谱构建,他成功克隆了该基因,并发现了一个意想不到的结果。lin-4基因产生了一种异常短的RNA分子,该RNA没有蛋白质生产的编码。这一令人惊讶的结果表明,来自lin-4的小RNA可能负责抑制lin-14。这是如何运作的呢?

与此同时,Gary Ruvkun在马萨诸塞总医院和哈佛医学院新建立的实验室中研究lin-14基因的调控。与当时已知的基因调控方式不同,Ruvkun发现lin-4并未抑制lin-14的mRNA生成。相反,调控似乎发生在基因表达的一个较晚阶段,通过阻止蛋白质的生成来实现。实验还揭示了lin-14 mRNA中一个片段,这个片段对于lin-4的抑制作用是必要的。两位获奖者将他们的研究结果进行了比较,最终带来了突破性的发现。短的lin-4序列与lin-14 mRNA关键片段中的互补序列相匹配。Ambros和Ruvkun进一步实验表明,lin-4微小RNA通过与其mRNA中的互补序列结合来关闭lin-14,从而阻止lin-14蛋白的生成。一种由先前未知类型的RNA——微小RNA介导的全新基因调控原理被发现了!这些研究结果于1993年在《细胞》期刊上以两篇文章的形式发表。

最初,科学界对这些发表的结果几乎置若罔闻。尽管这些结果很有趣,但这种不同寻常的基因调控机制被认为是秀丽隐杆线虫特有的,可能与人类及其他更复杂的动物无关。然而,这种看法在2000年发生了改变,当时Ruvkun的研究团队发表了对另一种微小RNA的发现,这种微小RNA由let-7基因编码。与lin-4不同,let-7基因在整个动物王国中高度保守并普遍存在。这篇文章引起了广泛的关注,随后几年中,科学家们发现了数百种不同的微小RNA。如今我们知道,人类中有超过一千种不同微小RNA的基因,微小RNA的基因调控在多细胞生物中是普遍存在的。

Ruvkun克隆了let-7,这是第二个编码微小RNA的基因。该基因在进化过程中是保守的,如今已知微小RNA调控在多细胞生物中是普遍存在的。

除了新微小RNA的定位之外,多个研究小组的实验还阐明了微小RNA如何生成并传递到受调控的mRNA中的互补目标序列的机制。微小RNA的结合会导致蛋白质合成的抑制或mRNA的降解。有趣的是,一个微小RNA可以调控多个不同基因的表达,反之,一个基因也可以受到多个微小RNA的调控,从而协调并微调整个基因网络。

用于生成功能性微小RNA的细胞机器也被用于在植物和动物中产生其他小RNA分子,例如,作为保护植物免受病毒感染的一种手段。Andrew Z. Fire和Craig C. Mello于2006年获得诺贝尔奖,他们描述了RNA干扰现象,其中通过向细胞中加入双链RNA来使特定的mRNA分子失活。

微小RNA的深远生理重要性

由Ambros和Ruvkun首次揭示的微小RNA的基因调控机制,已经在数亿年间发挥作用。这一机制促进了越来越复杂的生物体的进化。基因研究表明,如果没有微小RNA,细胞和组织就无法正常发育。微小RNA调控异常可能导致癌症,且在人类中已发现编码微小RNA的基因突变,这些突变会引发如先天性听力损失、眼部和骨骼异常等疾病。参与微小RNA生成的某种蛋白质的突变会导致DICER1综合征,这是一种与多种器官和组织的癌症相关的罕见但严重的综合征。

Ambros和Ruvkun在小蠕虫秀丽隐杆线虫(C. elegans)中的开创性发现是出乎意料的,揭示了基因调控的一个新维度,这对所有复杂生命形式都至关重要。

微小RNA的开创性发现是出乎意料的,揭示了基因调控的一个新维度。

关键文献
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. doi:10.1016/0092-8674(93)90529-y
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855-862. doi:10.1016/0092-8674(93)90530-4
Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kurodak MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinvasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86-89. doi:10.1038/35040556



原文:

The information stored within our chromosomes can be likened to an instruction manual for all cells in our body. Every cell contains the same chromosomes, so every cell contains exactly the same set of genes and exactly the same set of instructions. Yet, different cell types, such as muscle and nerve cells, have very distinct characteristics. How do these differences arise? The answer lies in gene regulation, which allows each cell to select only the relevant instructions. This ensures that only the correct set of genes is active in each cell type.

Victor Ambros and Gary Ruvkun were interested in how different cell types develop. They discovered microRNA, a new class of tiny RNA molecules that play a crucial role in gene regulation. Their groundbreaking discovery revealed a completely new principle of gene regulation that turned out to be essential for multicellular organisms, including humans. It is now known that the human genome codes for over one thousand microRNAs. Their surprising discovery revealed an entirely new dimension to gene regulation. MicroRNAs are proving to be fundamentally important for how organisms develop and function.

Essential regulation


This year’s Nobel Prize focuses on the discovery of a vital regulatory mechanism used in cells to control gene activity. Genetic information flows from DNA to messenger RNA (mRNA), via a process called transcription, and then on to the cellular machinery for protein production. There, mRNAs are translated so that proteins are made according to the genetic instructions stored in DNA. Since the mid-20th century, several of the most fundamental scientific discoveries have explained how these processes work.

Our organs and tissues consist of many different cell types, all with identical genetic information stored in their DNA. However, these different cells express unique sets of proteins. How is this possible? The answer lies in the precise regulation of gene activity so that only the correct set of genes is active in each specific cell type. This enables, for example, muscle cells, intestinal cells, and different types of nerve cells to perform their specialized functions. In addition, gene activity must be continually fine-tuned to adapt cellular functions to changing conditions in our bodies and environment. If gene regulation goes awry, it can lead to serious diseases such as cancer, diabetes, or autoimmunity. Therefore, understanding the regulation of gene activity has been an important goal for many decades.

The flow of genetic information from DNA to mRNA to proteins. The identical genetic information is stored in DNA of all cells in our bodies. This requires precise regulation of gene activity so that only the correct set of genes is active in each specific cell type. © The Nobel Committee for Physiology or Medicine. Ill. Mattias Karlén

In the 1960s, it was shown that specialized proteins, known as transcription factors, can bind to specific regions in DNA and control the flow of genetic information by determining which mRNAs are produced. Since then, thousands of transcription factors have been identified, and for a long time it was believed that the main principles of gene regulation had been solved. However, in 1993, this year’s Nobel laureates published unexpected findings describing a new level of gene regulation, which turned out to be highly significant and conserved throughout evolution.


Research on a small worm leads to a big breakthrough


In the late 1980s, Victor Ambros and Gary Ruvkun were postdoctoral fellows in the laboratory of Robert Horvitz, who was awarded the Nobel Prize in 2002, alongside Sydney Brenner and John Sulston. In Horvitz’s laboratory, they studied a relatively unassuming 1 mm long roundworm, C. elegans. Despite its small size, C. elegans possesses many specialized cell types such as nerve and muscle cells also found in larger, more complex animals, making it a useful model for investigating how tissues develop and mature in multicellular organisms. Ambros and Ruvkun were interested in genes that control the timing of activation of different genetic programs, ensuring that various cell types develop at the right time. They studied two mutant strains of worms, lin-4 and lin-14, that displayed defects in the timing of activation of genetic programs during development. The laureates wanted to identify the mutated genes and understand their function. Ambros had previously shown that the lin-4 gene appeared to be a negative regulator of the lin-14 gene. However, how the lin-14 activity was blocked was unknown. Ambros and Ruvkun were intrigued by these mutants and their potential relationship and set out to resolve these mysteries.

(A) C. elegans is a useful model organism for understanding how different cell types develop. (B) Ambros and Ruvkun studied the lin-4 and lin-14 mutants. Ambros had shown that lin-4 appeared to be a negative regulator of lin-14. (C) Ambros discovered that the lin-4 gene encoded a tiny RNA, microRNA, that did not code for a protein. Ruvkun cloned the lin-14 gene, and the two scientists realized that the lin-4 microRNA sequence matched a complementary sequence in the lin-14 mRNA. © The Nobel Committee for Physiology or Medicine. Ill. Mattias Karlén


After his postdoctoral research, Victor Ambros analyzed the lin-4 mutant in his newly established laboratory at Harvard University. Methodical mapping allowed the cloning of the gene and led to an unexpected finding. The lin-4 gene produced an unusually short RNA molecule that lacked a code for protein production. These surprising results suggested that this small RNA from lin-4 was responsible for inhibiting lin-14. How might this work?

Concurrently, Gary Ruvkun investigated the regulation of the lin-14 gene in his newly established laboratory at Massachusetts General Hospital and Harvard Medical School. Unlike how gene regulation was then known to function, Ruvkun showed that it is not the production of mRNA from lin-14 that is inhibited by lin-4. The regulation appeared to occur at a later stage in the process of gene expression, through the shutdown of protein production. Experiments also revealed a segment in lin-14 mRNA that was necessary for its inhibition by lin-4. The two laureates compared their findings, which resulted in a breakthrough discovery. The short lin-4 sequence matched complementary sequences in the critical segment of the lin-14 mRNA. Ambros and Ruvkun performed further experiments showing that the lin-4 microRNA turns off lin-14 by binding to the complementary sequences in its mRNA, blocking the production of lin-14 protein. A new principle of gene regulation, mediated by a previously unknown type of RNA, microRNA, had been discovered! The results were published in 1993 in two articles in the journal Cell.

The published results were initially met with almost deafening silence from the scientific community. Although the results were interesting, the unusual mechanism of gene regulation was considered a peculiarity of C. elegans, likely irrelevant to humans and other more complex animals. That perception changed in 2000 when Ruvkun’s research group published their discovery of another microRNA, encoded by the let-7 gene. Unlike lin-4, the let-7 gene was highly conserved and present throughout the animal kingdom. The article sparked great interest, and over the following years, hundreds of different microRNAs were identified. Today, we know that there are more than a thousand genes for different microRNAs in humans, and that gene regulation by microRNA is universal among multicellular organisms.

Ruvkun cloned let-7, a second gene encoding a microRNA. The gene is conserved in evolution, and it is now known that microRNA regulation is universal among multicellular organisms. © The Nobel Committee for Physiology or Medicine. Ill. Mattias Karlén

In addition to the mapping of new microRNAs, experiments by several research groups elucidated the mechanisms of how microRNAs are produced and delivered to complementary target sequences in regulated mRNAs. The binding of microRNA leads to inhibition of protein synthesis or to mRNA degradation. Intriguingly, a single microRNA can regulate the expression of many different genes, and conversely, a single gene can be regulated by multiple microRNAs, thereby coordinating and fine-tuning entire networks of genes.

Cellular machinery for producing functional microRNAs is also employed to produce other small RNA molecules in both plants and animals, for example as a means of protecting plants against virus infections. Andrew Z. Fire and Craig C. Mello, awarded the Nobel Prize in 2006, described RNA interference, where specific mRNA-molecules are inactivated by adding double-stranded RNA to cells.


Tiny RNAs with profound physiological importance


Gene regulation by microRNA, first revealed by Ambros and Ruvkun, has been at work for hundreds of millions of years. This mechanism has enabled the evolution of increasingly complex organisms. We know from genetic research that cells and tissues do not develop normally without microRNAs. Abnormal regulation by microRNA can contribute to cancer, and mutations in genes coding for microRNAs have been found in humans, causing conditions such as congenital hearing loss, eye and skeletal disorders. Mutations in one of the proteins required for microRNA production result in the DICER1 syndrome, a rare but severe syndrome linked to cancer in various organs and tissues.

Ambros and Ruvkun’s seminal discovery in the small worm C. elegans was unexpected, and revealed a new dimension to gene regulation, essential for all complex life forms.

The seminal discovery of microRNAs was unexpected and revealed a new dimension of gene regulation. © The Nobel Committee for Physiology or Medicine. Ill. Mattias Karlén



过去9年

诺贝尔生理学或医学奖获得者


2023年——匈牙利/美国科学家卡塔琳·考里科(Katalin Karikó)和 美国科学家德鲁·韦斯曼(Drew Weissman),获奖理由发现了核苷基修饰,从而开发出了有效的抗COVID-19 mRNA疫苗”。

2022年——瑞典科学家斯万特·帕博(Svante Pääbo),获奖理由“在已灭绝的人类基因组和人类进化方面的发现”。

2021年——美国科学家David Julius、Ardem Patapoutian获奖,获奖理由是“发现温度和触觉的受体”。
2020年——美英三位科学家Harvey J. Alter、Michael Houghton、Charles M. Rice获奖,获奖理由是“发现丙型肝炎病毒”。
2019年——美英三位科学家William G. Kaelin Jr、Peter J. Ratcliffe和Gregg L. Semenza获奖,获奖理由是“发现了细胞如何感知和适应氧气的可用性”。
2018年——美国科学家James P. Allision和日本科学家Tasuku Honjo获奖,获奖理由是“发现了抑制负面免疫调节的癌症疗法”。
2017年——三位美国科学家Jeffrey C. Hall、Michael Rosbash和Michael W. Young获奖,获奖理由是“发现了调控昼夜节律的分子机制”。
2016年——日本科学家Yoshinori Ohsumi获奖,获奖理由是“发现了细胞自噬机制”。
2015年——中国科学家屠呦呦获奖,获奖理由是“有关疟疾新疗法的发现”;另外两位获奖科学家为爱尔兰的William C. Campbell和日本的Satoshi Omura,获奖理由是“有关蛔虫寄生虫感染新疗法的发现”。


227 位诺贝尔生理学或医学奖得主


诺贝尔生理学或医学奖自 1901 年开始颁发,从 1901 到 2023 年,共有 227人获得了诺贝尔生理学或医学奖。其中,有 40 次由个人获得,35 次由两位获奖者共享,39 次由三位获奖者共享。


之所以多人可以共同获得同一届诺奖,是因为在诺贝尔基金会章程中有这样的规定:奖金可以平分给都值得获奖的两部分,二人、三人共同获奖的,应当联合颁发,但在任何情况下,奖金不得分给三人以上。


但是,在 1915-1918 年、1921 年、1925 年、1940-1942 年,有 9 次诺贝尔生理学或医学奖没有颁发。因为那 9 年,正好是处在第一次和第二次世界大战期间。


历年诺贝尔生理学或医学奖得主名单:

https://www.nobelprize.org/prizes/lists/all-nobel-laureates-in-physiology-or-medicine/


13位女性获奖者


在 227 位获得诺贝尔生理学或医学奖的人中,有 13 位是女性。她们分别是:


  • 格蒂·科里(Gerty Theresa Cori),生物化学家。1947 年,她与丈夫卡尔·斐迪南·科里(Carl Ferdinand Cori)因“发现糖代谢中的酶促反应”而共同获奖,共同分享一半奖金。

  • 罗莎琳·耶洛(Rosalyn Sussman Yalow),医学物理学家。1977 年,她因“开发多肽类激素的放射免疫分析法”而获奖,获得一半奖金。

  • 芭芭拉·麦克林托克(Barbara McClintock),细胞遗传学家。1983 年,她因“发现可动遗传因子”而获奖,是首位单独获得该奖项的女性科学家。

  • 丽塔·蒙塔尔西尼(Rita Levi-Montalcini),神经生物学家、医生。1986 年,她与生物化学家斯坦利·科恩(Stanley Cohen),因“发现生长因子”而共同获奖,共同分享一半奖金。

  • 格特鲁德·埃利恩(Gertrude Belle Elion),生物化学家、药理学家。1988 年,她与药理学家、医生乔治·希钦斯(George Hitchings)和药理学家詹姆士·布拉克(James Black),因“发现药物治疗的重要原则”而共同获奖。

  • 克里斯蒂·沃尔哈德(Christiane Nüsslein-Volhard),发育遗传学家。1995 年,她与发育生物学家艾瑞克·威斯乔斯(Eric Wieschaus)和遗传学家爱德华·路易斯(Edward Lewis),因“在早期胚胎发育的遗传控制方面的发现”而共同获奖。

  • 琳达·巴克(Linda B. Buck),生物学家。2004 年,她因“发现气味受体和嗅觉系统的组织”而获奖,获得一半奖金。

  • 弗朗索瓦丝·巴尔-西诺西(Françoise Barré-Sinoussi),病毒学家。2008 年,她与病毒学家吕克·安托万·蒙塔尼耶(Luc Antoine Montagnier),因“发现人类免疫缺陷病毒”而共同获奖,共同分享一半奖金。

  • 伊丽莎白·布莱克本(Elizabeth H. Blackburn)和卡罗尔·格雷德(Carol W. Greider),分子生物学家。2009 年,她们因“发现染色体如何受端粒和端粒酶的保护”而共同获奖,共同分享 2/3 的奖金,是历史上首次同时有两名女性获得诺贝尔生理学或医学奖。

  • 梅·布里特·莫泽(May-Britt Moser),心理学家、神经科学家。2014 年,她与丈夫爱德华·莫泽(Edvard Moser)因“发现构成大脑定位系统的细胞”而共同获奖,共同分享一半奖金。

  • 屠呦呦,药学家。2015 年,她因“发现疟疾新疗法”而获奖,获得一半奖金,她也是第一个获得科学类诺贝尔奖的中国本土科学家。


  • 卡塔琳·考里科(Katalin Karikó),神经科学家,生物化学家。2023年,她与免疫学家德鲁·韦斯曼(Drew Weissman),因“发现了核苷基修饰,从而开发出了有效的抗COVID-19 mRNA疫苗”共同获奖。


本文综合来源:

诺贝尔官网、ChatGPT、未来论坛及网络



10月30日-11月3日

2024未来科学大奖周

 与你不见不散!


扫描二维码,手动get
《“未来”科学家—未来科学大奖获奖者访谈实录》



更多相关阅读




未来科学发展中心
科学改变未来。未来论坛是由科学家、企业家、投资人群体于2015年共同发起创立的科学公益组织。全面推动科学传播事业发展和产学研资对接融合,迄今已凝聚了数百位全球杰出科学家、行业领军人物、青年创新精英。
 最新文章