AI芯片通常采用GPU和ASIC架构。GPU因其在运算和并行任务处理上的优势成为AI计算中的关键组件,它的算力和显存、带宽决定了GPU的运算能力。GPU的核心可分为CudaCore、Tensor Core等;Tensor Core是增强AI计算的核心,相较于并行计算表现卓越的Cuda Core,它更专注于深度学习领域,通过优化矩阵运算来加速AI深度学习的训练和推理任务,其中Nvidia Volta Tensor Core架构较Pascal架构(Cuda Core) 的AI吞吐量增加了12倍。此外,TPU作为ASIC的一种专为机器学习设计的AI芯片,相比于CPU、GPU,其在机器学习任务中的高能效脱颖而出,其中TPU v1在神经网络性能上最大可达同时期CPU的71倍、GPU的2.7倍。
相关阅读:
Intel下一代数据中心CPU:Chiplet设计,性能240%提升
温馨提示:
扫描二维码关注公众号,点击阅读原文链接获取“架构师技术全店资料打包汇总(全)”电子书资料详情。