矩阵乘法的运算规则看似怪异、烦琐:
m行k列矩阵A和k行n列矩阵B的乘积矩阵AB是一个m行n列矩阵C,其位于第i行和第j列的元素Cij是矩阵A第i行的总共k个元素和矩阵B第j列的总共k个元素的一对一依次乘积之和。
有没有想过,为什么要这样定义呢?
许多线性代数教材着眼于“算”,却鲜少对图景的整体把握。死记硬背之下,不少学生知其然而不知其所以然。本文试图从线性算子的复合,自然引出矩阵乘法规则。如果你能耐心读到最后,定会豁然开朗。
引进一般的n维欧几里得空间Rn,其基本思想依然如旧。这个线性空间中的所有n维向量是将n个实数排成一行(或排成一列),左右两端再用圆(或方)括号括起来形成的全部“n元组”,其中第i个数xi称为给定向量x=(x1,…,xn)的第i个分量。与R2和R3完全类似,Rn中任意两向量x=(x1,…,xn)及y=(y1,…,yn)的和向量x+y之各分量定义为x和y的对应分量之和,实数α和向量x的标量乘法结果也是向量,其分量为α和x的分量之积。
如果把上面的初中生都知道的线性函数看成是由数a写出的一行一列矩阵[a]所定义的将1维欧几里得空间R1≡R映入R1的算子,则上面的演算清楚地说明它保持R1的线性运算不变。这样,我们有了线性算子的一般定义:如果算子T:Rn →Rm满足两个条件:
(ii) 任给标量ξ和Rn中的向量x,都有T(ξx)=ξTx,
关注公众号了解更多
会员申请 请在公众号内回复“个人会员”或“单位会员
欢迎关注中国指挥与控制学会媒体矩阵
CICC官方抖音
CICC头条号
CICC微博号
CICC官方网站
CICC官方微信公众号
《指挥与控制学报》官网
国际无人系统大会官网
中国指挥控制大会官网
全国兵棋推演大赛
全国空中智能博弈大赛
搜狐号
一点号