专刊征文:Geospatial big data and GeoAI in urban environmental health

文摘   教育   2023-10-10 13:30   中国香港  


以下《城市信息学》专刊现已开放供投稿。提交截止日期为2024年6月30日。


专刊主题:Geospatial big data and GeoAI in urban environmental health


客座主编:

宋祎萌,耶鲁大学;邮箱:yimeng.song@yale.edu

螘立,哈佛大学;邮箱:li_yi@hsph.harvard.edu

陈晨,加州大学圣地亚哥分校;邮箱:chc048@ucsd.edu


目标和范围:

新兴技术的广泛应用,例如地理空间人工智能(GeoAI)、高性能计算技术、以及多源地理空间大数据融合(例如遥感图像、社交媒体数据、手机信令数据和物联网数据),激发了城市信息学领域对于创新数据源和地理计算技术的探索,为解决各类型的空间优化问题创造了巨大机会。这一举措对城市环境健康领域亦产生重大影响,使我们能够深入了解城市环境与人类健康之间的复杂关系。然而,方法创新和技术融合同时带来包括数据集成、质量、算法开发、道德伦理和验证框架等一系列挑战。因此,本专刊期待来自地理空间大数据和地理人工智能领域在城市环境健康方面的前沿研究和创新解决方案。我们欢迎来自不同学科的贡献,以全面增进该领域对应用、方法和挑战的理解。通过探索地理空间大数据、人工智能和遥感之间的协同作用,有助于促进城市和环境健康管理方面的跨学科合作和基于经验的决策。


可能的主题:

1. 地理空间大数据和GeoAI技术在环境暴露评估中的整合;

2. 用于疾病绘图和风险评估的 GeoAI 算法的开发和应用;

3. 使用遥感数据和机器学习来分析影响健康结果的环境因素;

4. 在城市健康研究中使用地理空间大数据的时空建模和预测分析;

5. 地理空间大数据和GeoAI在环境健康差异识别和管理中的应用;

6. 基于城市环境健康多源数据分析的地理空间数据融合和集成;

7. 用于探索城市环境健康风险时空模式的大数据分析和可视化技术;

8. 利用地理空间大数据和 GeoAI 促进城市环境健康的伦理问题和挑战;



The following special issue in Urban Informatics is open for submissions. The submission deadline is June 30, 2024.


Theme: Geospatial big data and GeoAI in urban environmental health


Guest editors:

Dr. Yimeng Song, Yale University, USA; Email: yimeng.song@yale.edu

Dr. Li Yi, Harvard University, USA; Email: li_yi@hsph.harvard.edu

Dr. Chen Chen, University of California San Diego, USA; Email: chc048@ucsd.edu


Aim & Scope:

The recent emerging technology, such as geospatial artificial intelligence or GeoAI, the advances in computing technologies, as well as the proliferation of multi-source geospatial big data (e.g., remotely sensed imagery, social media data, cellular, and IoT data), have created tremendous opportunities for researchers to tackle various types of spatial optimization problems, taking into account new data sources and novel technologies. This has significantly impacted the field of urban environmental health, enabling a deeper understanding of the complex relationships between the urban environment and human health. However, methodological innovation and technology fusion pose challenges. These include data integration, quality, algorithm development, ethics, and validation frameworks. This special session seeks cutting-edge research and innovative solutions in geospatial big data and GeoAI in urban environmental health. We invite contributions from diverse disciplines to advance our understanding of applications, methodologies, and challenges. By exploring the synergies between geospatial big data, AI, and remote sensing, we can foster interdisciplinary collaborations and evidence-based decision-making in urban and environmental health management.


Possible topics:

1. Integration of geospatial big data and AI techniques in environmental exposure assessment.
2. Development and application of GeoAI algorithms for disease mapping and risk assessment.
3. Use of remote sensing data and machine learning for analyzing environmental factors influencing health outcomes.
4. Spatial-temporal modeling and predictive analytics using geospatial big data in urban health studies.
5. Applications of geospatial big data and GeoAI in the identification and management of environmental health disparities.
6. Geospatial data fusion and integration for multi-source data analysis in urban environmental health.
7. Big data analytics and visualization techniques for exploring spatio-temporal patterns of urban environmental health risks.
8. Ethical considerations and challenges in utilizing geospatial big data and GeoAI for urban environmental health.


END


转发,点赞,在看

城市信息学 Urban Informatics
《城市信息学》(Urban Informatics) 是由国际城市信息学学会(The International Society for Urban Informatics)主办的一份国际性、开放性、同行评审的期刊。
 最新文章